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EXCESS FREE ENERGY OF MULTIPOLAR ASSEMBLIES
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Using a classical perturbation method, the contributions to the Helmholiz free energy
from tensorial intermolecular forces are calculated up to two-body or three-body interactions.
The calculations are carried out with the total tensorial potential energy of an assembly of unlike
micro-systems composed of the electrostatic energy of interactions between permanent 2%-pole
and 27-pole charge distributions and the induction energy of interactions between permanent
2m.pole charge distributions and the induced 2™-pole moments of other charge distributions.
The general results thus obtained are discussed for some simpler cases of axially symmetric mole-
cules possessing dipole, quadrupole, octopole etc. moments, for tetrahedral molecules with octo-
pole moment or for octohedral molecules with hexadecapole moment. The tensorial part of
the free energy is applied to the case of two-component systems. Application to the equation of
state of an imperfect gas mixture is also given.

1. Introduction

The macroscopic thermodynamic functions, such as the entropy S and the pressure p,
can be obtained theoretically by differentiation of the Helmholtz free energy F with respect
to the temperature T or volume V, namely

oF oF
=— |— = — | = , 1
S (QT)V,N’ r (‘QV)T,N (1 )

where N is the number of molecules contained in the volume V.
On the other hand, in equilibrium statistical mechanics, the free energy F is related
to the partition function Z by the fundamental equation

F=~kTnZ,, 1.2)

which corcelates the observed macroscopic properties of matter with its inferred microscopic
properties.

In the present paper we are interested only in the part of F resulting from the fact
that in the case of most molecular substances the intermolecular forces depend rather
strongly on the relative orientation of the molecules. Investigation of this additional free

energy of a substance in the absence of external fields can be used to obtain valuable informa-
encacmmy
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tion about the nature and magnitude of the directional forces acting between its non-spherical
molecules and on their electric multipole (e.g quadrupole, octopole etc.) moments and
consequently, on the structure of the substance.

Pople [1, 2] proposed a general method for calculating the free energy of an assembly
of axially symmetric molecules interacting not only according to a central-force law, but
significantly with angularly dependent forces. He calculated the centribution to F from
directional forces by treating the latter as a perturbation to the central intermolecular force.
A similar approach has been used by Barker [3] for the case of an assembly of isotropically
polarizable dipolar molecules. Recently, Parsonage and Scott [4] calculated the contribu-
tion to the free energy from octopole-octopole interaction of tetrahedral molecules. Earlier,
a similar problem for the case of tetrahedral molecules in solids was discussed in detail
by James and Keenan [5] in their theory of the phase transition in solid methane. We should
also mention that recently Jepsen and Friedman [6] developed a general method for evaluat-
ing Mayer cluster diagrams for assemblies of molecules with pairwise orientation-dependent
forces.

The first classical theories of angularly dependent intermolecular forces were given
by Debye [7] and Keesom [8] and subsequently discussed in detail and developed by sev-
eral authors (see e.g refs [1—3] and [9—12]). The tensor form of the multipole interaction
forces was given by Frenkel [13] and more recently by Jansen [14], whose general and concise
tensor notation we use in the present paperl.

In addition to the electrostatic interaction of the 2"-pole permanet charge distribution
with another 2™-pole, as discussed in general by Jansen, we take into account the interactions
between a 2"-pole permanent charge distribution with the 2”-pole moments induced in
another, and vice versa® We generalize these electrostatic and inductive interactions to an
assembly of micro-systems of various species and, by Pople’s method, calculated the tensor-
ial contributions to the excess free energy. The results obtained in this way hold in general
for an assembly composed of 2"-pole micro-systems of arbitrary symmetry, and are discussed
for some special cased, namely for axially symmetric multipolar molecules, tetrahedral mole-
cules and octohedral molecules. Applications to two-component systems are given as well
as to the second virial coefficient of an imperfect gas of unlike multipolar molecules.

2. Excess free energy and distribution functions

We consider a classical assembly of NV micro-systems (e.g. ions or molecules) occupying
a volume ¥ in equilibrium at the temperature 7. According to the principle of classical
statistical mechanics, the Helmholtz free energy (1.2) for the case considered can be expressed
as follows:

F = Fa—kTln {%} . 2.1)

1 The tensor formalism used in our previous papers [15, 16] is less compact and not convenient for the
definition of multipole moments of order n and the n-th rank interaction tensor as given by Jansen.

2 However, we shall not consider here the anisotropic dispersion forces between the charge distributions
as discussed previously by De Boer and Heller [17], London [18] and De Boer [19] (see also refs 2, 12, 15 and 20).
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Here, F,, is the free energy of an ideal assembly of N non-interacting micro-systems, and

o[ ol
)

is the configurational integral of an assembly of N interacling micro-systems in which
U@N, w") is the total interaction potential energy. The rN denote the set of N position
vectors ¥y, Ty, ...,ry of the micro-systems and w" = @y, w,, ... wy— the angular coordinates
determining their orientations; thus .

N _ N_ [... N
PN = [y [ and @Y = [ [de?.
Following Pople, we write

U, o) = UO@N) - 7,0, o), (23)

where U@@) is the central-force part of the total potential energy, which is a function of
rN only, and V,(rN, ") is the tensorial-force part—dependent both on rNand on wN

Considering ¥, to represent a perturbation to the unperturbed energy U © the con-
figurational integral (2.2) can be put in the form

=1 1\,
On = QVOR ) — (— k—T) o, 24)
n=0
where N

B[l e

denoting the configurational integral of an assembly of N micro-systems interacting with
central forces only, and

(Ve = (VO f f VN, @N) exp{ U(:;,’“N)} drNdwN (2.6)

is the classical statistical average of V7.

By (2.1) and (2.4), the excess free energy F,, = F—F; (the difference between the
free energy of the real assembly and that of an ideal assembly of the same structure and in
the same thermodynamical ‘state NN, ¥, T) can now be expressed as follows:

@7

F, ex central+F ensorial ?
where
58) .
Fcentral — kT In { VN} (28)
is the contribution to F,, from the central forces, and
F ETIn<1 e L) Vi 2.9
tensorial = — 1 + Zl F - ﬁ < t> P ( . )

is the contribution to F,, from the tensorial forces.
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For

n=1

_1<{i;1T (— ,;T-)"<V:‘>}<1,

which should be satisfied in most cases, we obtain from (2.9)

© o m (& 1 \n m
Rensorial =kT Z ( ,73) {Z 73;" (_ ﬁ) (V;,>} . (210)
m=1

n=1

In a good approximation, this expression yields

Fronial = Fo+ Fyt Fy+-Fyt ... @2.11)

tensorial

where the successive terms are of the form

Fy= (Vs

2 1 2 2
Fy = — g (VD =— o (VD= (9,

1 s 1 s \ .
Fy = 6k T2 (A3 = IR T? {VH=3VE (Vo) +2(V2)3},

1 4 2\27 __ 1 4
Fy = — s AV =3AV)D% = — g (VH—
=3V DAV 3 (V) +12(F3) (V)2 —6{V )4}, (2.12)

with AV, = V,—(V,) denoting the fluctuation of V.

We see that the first-order perturbation to F, is expressed directly by the statistical
average of V,, the second-order perturbation — by the statistical average of the square
of the fluctuation of V), the third-order perturbation — by ((4V))3), etc.

We now introduce the probability P® (#*) dr* of finding a selected group of & micro-
systems in the elementary volume dr* centered about the point 7%, independently of the
positions of the remaining (N—A) micro-systems of the assembly. Since the probability
densities P® are of the form

PO(phy — oo f fexp{ “’)(r"’)} drN—h, @.13)
N (N— h)

the statistical average (2.6) can be expressed as follows:
V> = [ [ VIGT) PO ar, (2.14)
where
iy = Q7N [ VieN, o) det, (2.15)

is the unweighted average of V7' over all orientations of the micro-systems.
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The probability PP(@Y) of (2.13) is related with the distribution function of the A
micro-systems as follows [21]:

N!

n®(rk) = (N h)!

P®(rky, (2.16)
In the case of an assembly of N;, N,, ... IV, ... micro-systems of the first, second, ...i-th
species, the functions (2.16) have to be replaced by the following distribution functions:

(1)(’)" Nipﬁl)(rp),
X% nlJ ( »? q) =N, (N 61]) Pz(JZ)(rp’ ,rq)a
2 n (1 1y 1) = Ny(N;—8,) (Ny— 03— 0,3) PD (1,1 1), ooy o (217)

where x; = N,;/N is the mole fraction of the i-th component. Here, n® (r,) is the ordinary
distribution function for single micro-systems p of species i, "’v ( »»¥,) is the binary
distribution function for pairs of micro-systems p and ¢ of species i and j, and nuk( r,T,)
is the ternary distribution function for triples of micro-systems p, g and r of species i, j and k,

respectively.

3. Classical theory of tensorial forces

Let us consider two arbritrary electric charge distributions p and ¢ separated by a dis-
tance 7,,. The potential energy of interaction between these charge distribution is given by

Z Z _ Orla (3.1)
| qu TP” + rq.u |

where e,, is the v-th electric charge of the p-th distribution and 7,, — its radius vector;
summation in (3.1) extends over all charges in the distributions p and q.

In the case of nonoverlapping charge distributions when r,,+r,, <r,, we can evaluate
(3.1) in the form of two Taylor expansions [14],

oo oo .
L=+ N® ( )

) Z EE NG ) T ] N, (3.2)

n—0 m=0

where in Jansen’s tensor notation
NP =3 e, 1, (3.3)
denotes the multipole moment operator of order n, of the p-th charge distribution, and
(”)ng) - vn+m (i) , P#q (3.4)

Tpq

is the n+m-th rank interaction tensor between 2"-pole distribution p and 2”-pole distribu-
tion ¢; ¥ is the differential operator. In Eq. (3.2), [n] denotes that the product of two n- -th —
rank tensors N(") and (")T is contracted n times.
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We now introduce here n-th rank electric multipole tensor defined as

M = 2 epS pw (3.5)

where the operator S;’,’,) of rank n is given (the explicite form is given by A.3 in the Appendix)
by

w_ (D" g [ 1
Sy = nT I VW (rp,, . (3.6)
M, ©) — = e, is the unipole or total charge of the distribution p, M M s its dipole moment,
M® —its quadrupole moment, M{® —its octopole moment, M(4)— its hexadecapole
moment, M — its 2"-pole moment.
With the help of definitions (3.4) and (3.5), Eq. (3.1) can be expressed as follows:

- *® & (=1yr+12ntmplml o o ) pem) (m)
Upg = Z Z (2n)! (2m)! M," [n] " Ty [m]M,™. (37)

This expression represents the general form of the electrostatic energy of interaction
of the permanent 2”-pole charge distributions of micro-system p with the permanent 2”-pole
charge distribution of micro-system ¢; here, T, is directed from molecule g to p.

Analogously to this expression we obtain the total electrostatic potential energy of an
assembly of N micro-systems of various species,

> —1 m+12n mp! ! n n m m
Va = % 2 Z Z Z Z ( )(2n)!(;m)’; = M T (ML (39)

ij  p=1g=1 n=0 m=0

where the multipole tensor M{? now refers to the p-th micro-system of species i.
Eq. (3.8) can also be expressed in the following form:

Z Z i (2n)! Mlg:") [n]‘FIE’?)’ (39

where we have introduced the total electric field of order n at the centre of the p-th micro-
system of species ¢ due to all the other micro-systems of the assembly,

2

f

, O (—1)"2%m ! Gy "
F,ﬁf:Z Z 2)m)‘ T[] M, (3.10)

J =1 m=0
In particular, we obtain from (3.10) for a zero-order field, or potential

N;j oo
1)’"2 m! " -
FO = —gp — Z Z( g TR ML, (3.11)




401

and for a first-order field, or shortly electric field F,

o (—1ym2m 1 g
B =F= Y )Y S gty v, (312)

Similarly, for n = 2 we obtain from (3.10) the second-order field (or field gradient)
for n = 3 the third-order field (or gradient of field gradient) etc.

In general, beside the purely electrostatic interaction between the permanent charge
distributions as discussed above, we should consider the additional energy of induction
arising from interactions between the permanent charge distribution of one micro-system
and the momentsinduced in the other micro-system. To within the induced-dipole approxi-
mation, the potential energy of induction is given by

Vil = — Zmerb | (3.13)

where @, is the electric dipole polarizability tensor of an r-th micro-system of species £.
On substituting the electric field (3.12) in Eq. (3.13) we have

NfNij°°°°_m1nm!!
__—ZZ;;;;( 1()2,;!2(;m,;!m %

itk p=1

x MP[n T - 5 - OT ] MEP. (3.19)

In the Appendix, the expression of Eqs (3.8) and (3.14) are applied to micro-systems
possessing the axial symmetry.

We.now generalize Eq. (3.13) to the case of higher order induced moments as already
considered by Frenkel [13]. The total moment of order n induced in the 2"-pole charge
distributions of an r-th micro-system of species % by the electric field of the permanent
2”-pole charge distributions of all the other micro-systems of an assembly will be defined
here as follows:

pp -y 2 ot AR m] B, (3.15)

where A is the tensor of rank n+m characterizing the polarization of the 2-pole
permanent moment due to the electric field of order m defined in general by Eq. (3.10).

In terms of the induced moments (3.15), the total potential energy of induction is then
given by the following general expression:

o0

N
1 2"71 ! (n) (”)
V. _ = E 2 .16
ind = 4 (2 [ rk ’ (3 )

n=1
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which, by Eq. (3.15), we can rewrite thus

N o0 o
__1 VN 2lml pey e gom o pon

On substituting herein the field of (3.10), we obtain in terms of multipole moments,
polarizabilities and interactions tensors

N; o o oo oo imgp e L
woo R R LR LR L S

gk p=1 ¢=1 r=1

x MEPIal T (0| AR ) T ) M. (3.18)
Eq. (3.17). gives for the first four terms

Ng

1
Vinda = — 3 Z Z {FS@) NSV [ LN (F(l) MAD . pD |
k. r=1
1
PR PAR - FR)+ 5 - PAR FR+ } (3.19)

where AW and PA® are the tensors of dipole polarization caused by the electric field F®
and field gradient F®, respectively, and similarly @A® and®A® are the tensors of
quadrupole polarization due, respectively, to the field and field gradient.

In explicite form we obtain from (3.19), in the same approximation,

” A O o (L rigmmg |
ind = ZZZZZZ{) eniemr  ~
ij =1 g=1 r=1 n=0 m=
X{M;'lf)[n](")Tg) )] A:}e) . (I)T(r';)[ 1M (M) ( (n)[ ](n)T(l) Q) A(2) (2)T(m)[ ] M;;”)
Mf,?)[n](")Tg) . ) ASe) . (1)T£’;)[ ] (m)) (n)[ ](”)T(z) (2) A(Z) (2)T(m)[ ] M(m) }
(3.20)

The first term of this expression yields again the first-order induction potential energy
of (3.14), if we only denote PAP=a,,, whereas the remaining terms describe the high order
energies.

4. First-order perturbation to F,

As seen from (2.12), in the first approximation the tensor contribution to the free energy
is given directly by V,. We assume that the total tensorial potential energy V, is the sum
of the electrostatic potential energy ¥, given by (3.8) and the potential energy of induction
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Vi
of permanent moments do not contribute to F,, as the first power of ¥, vanishes on isotropic
averageing i.e. on averageing over all possible orientations of micro-systems with equal
probability given by (2.15). The only non-zero contributions to F, in the first approximation

come from interactions of multipoles of the induced type leading in general to induction

Lq given in general by (3.18). However, in the first approximation, electrostatic interactions

energy of the form (3.18).

We shall first compute the contributions to F, from the induction energy in the dipole
approximation (3.14). Obviously, on isotropic averageing of the energy of Eq. (3.14), the
only non-vanishing term is the one with p = ¢=£r, n = m and the factor

n n 1 1 ” ” 1 1 ) n 7 1 n 1
]Wp(i)[n]( )17;,,) M ( )Tip)[n,] Z‘qp(,') = “( 2 ‘) 1 “rk(z‘lj(?i)[n] Z‘II(’I')) (( >171(7r)[n 1]( )Tgr))a

and we obtain from (3.14)

Ni o0
22n(nV
(1) = (n) (n) (W) () (L)
B NN Y e a2 1T,
i g=1 n=
4.2)

where «,; is the scalar dipole polarizability of a micro-system g of species j.
Recurring to the definition of (2.14) with the binary distribution function defined in
(2.17) and the fact that [14]

T (14 m] T = (2n+2m) | 2~y 2ntmeD, (4.3)

we have, by (4.2)
Ty = 2 Z o [ [ 0900wy v, (4.4

Here, we have introduced the following symmetrical quantity

ooﬂ 2 2)! ) # ” n -~2(n
Qzl)(rpq . _i_ }_l 2§n7)L"F(2) —'57:7[)' { 1(M( )[ ]M( ))_|__(M( )[ ]M( )) (Z} ( +2)

n=0

(4.5)

Further simplification of the foregoing quantity can be achieved by assuming a partic-
ular type of symmetry of the micro-systems. This will now be effected for the following
cases most commonly occuring:

(i) Axial symmetry. If the micro-systems present, in particular, symmetry with respect
to the z-axis of the molecular coordinate system,

(@n)!
2n( 1)2

M(")[ ] M(n) {Mgn)}z, (4.6)
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and the quantity of (4.5) assumes the simpler form of
1\ . 2 2 -
Pp) = 5 Y. (D) M)+ (M) 2 0, (4.7)
n=0

where M{™ is the scalar multipole moment of order n for the axially-symmetric micro-
system of species i.

Denoting the scalar monopole, dipole, quandrupole, octopole and hexadecapole moments
of the axially-symmetric micro-system as follows [14, 16]:

e; =M® =Dle, =M® - Zew v
0, = MP = 3 e,(5i—x2) Q;=MP = 3 ¢, (53 —32,7),
&, =MP =3, (2t —6220% 1+ x3), . (4.8)
we obtain from (4.5) ”
0P r0) = 5 (e +elg)rpb (e ) 5 (03 +Om)
+2(i 2P + Q) 130 + %(oe@f—i—d’za,) [ (4.9)

Here, the consecutive terms determine the interaction between the permanent multipole
moments (charge, dipole, quadrupole, octopole and hexadecapole) of one micro-system
and the induced dipole moment of the other. The three first terms in Eq. (4.9) determine
the well-known Debye—Falkenhagen induction effect. '

(i) Tetrahedral symmetry. In the case of micro-systems having the tetrahedral symmetry
(e.g. the molecules CH,, S, Cl,, etc.), the first non-zero moment is the octopole moment
defined by the scalar quantity

_5
(@) = Z €Yoz (4.10)

v

With this definition [22], M : M{® = 6 (2,,,)?, and Eq. (4.5) reduces to (on retaining
only the induced dipole-octopole interaction term)

(l)(’pq) = 5 {“l xyz)f +(~Qxyz)z “J}rpq . (4.11)

(iii) Octahedral symmetry. Micro-systems possessing the octahedral symmetry, as the
molecules SF; and UFg, will present a hexadecapole moment but none of the lower order
moments. In this case [16]

M® IM® = 30 (Prrze)? with (Bns)s = 7 Z en(3222—2Y), (4.12)

v
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and Eq. (4.5) yields
120 -
1(11)(17 \ - =7 {“t mczz)_;g + (Qxxzz)?“j}rpqlzv (413)

for the induced dipole-hexadecapole interaction between octahedral molecules.
If we take into account the total induction potential energy of (3.20), we obtain for its
statistical average value instead of (4.4)

< nd> <V1(IB> +< 1(2)>+"' D) Z xx // md ‘1) n(2)( q) drpdrq’ (414)

where the second order energy V(% is given in the general Equation (3.20) by the last term,

containing the field gradient quadrupole polarizability tensor ®A® and

0550 = QP59 +QPp0) + - (4.15)
is the sum of (4.5) and

(2) - 2 < "(2n+4) ()2 (n) () () (n) —2(n+3)
(o) = 5 L o l@n i1 GO (MR MP)gir i, @.16)

with g; denoting the field gradient quadrupole polarizability of the micro-system of species i.
From Eq. (4.16) we have for the special cases of micro-systems (i) axially-symmetric

1

P = 5 Y, (1D (n+2)@n+3) (M) + MOV g2, (4.17)

n=0
or up to the term with induced quadrupole-quadrupole interaction,
0P 00) = (@ie*+eg)rag’ + 50 +uig)rs + 14(06] + O, (418)
() tetrahedral
| Qi(rp0) = 72 {4:( Q) +( Q) 705} 757, (4.19)

(i) octahedral

2640
Q(2)( pq) - {Qt(¢xxzz)1 +(¢xxzz)z q]} rpq . (420)

5. Second-order perturbation to F

By (2.12), the second-order perturbation to F, contains the term (¥?2), which now
yields the first non-zero contribution also in the case of electrostatic (2"-pole) — (2”-pole)

interactions. The square of the electrostatic potential energy (3.8),
Ny Nk N oo 0 @ @ Tymen Qutmedn 'y L U Uy
ZZZZZZZZZ (2n)! 2m)! 2n")! (2m)!

ikl p=1 gq=1 r s=1

X Mlr] TG0 m] MEMG )T m'] My, (5.1)
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averaged over all orientations, presents two non-vanishing terms for p = r#¢ = s and
p = s#q = r, respectively, which contain the factor

(M) T ] M) =

1

= @ i M MO T m] P MP M), (52)

whence, by (4.3), we have
1 4 O o 2n+m(2n4-2m) ! (nlm!1)?
Va=73 Z Z L Z @)1em)! @nt])! @miD! *

X (M [n) ME?) (M7 lm] MGy 7 (5.3)

Substituting (5.3) in (2.14) and recurring to the binary distribution function defined
in (2.17) we have, in the second approximation, the following contribution to F;:

<Ve1> = 2 xzx]f Q "M)nu 5, 1 )drpdr, (5-4)

from electrostatic interactions between permanent multipole moments; here, use has been

made of the notation

R 2n+m2n+2m‘n'mV2 n n m m) _—2(n+m
T = 2, ), o O MO ) M) .

(5.5)

On applying this expression to axially-symmetric micro-systems, we have by (4.6) the
following simple formula:

I O (2n+2m)! n m) o_—2n-+m
G = 3 Y ot gy L 5.6
n=0 m=0

rendering, to within the term describing hexadecapole-hexadecapole interaction,

0 = chefrid+ 5 (R pdeae + = (B0 1043 5 +361erye +

1

= (52} +60uiQF +126 OF 67 +

1 -
+ = (0} + Tl 6] + 701 + ey +

—12

+600Q2% 47 + 5BFed)rpn + (5/»1 2p? + 18071027 +180270; + 5Pi )t +

1 _ _ _
71 (10} B} + 12022 +1D;ON)r, . + ﬁ (QFD} + DLy + - 1430 DD+

(5.7)
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The above results determine the well-known Keesom orientation effect as generalized
to the case of axially-symmetric micro-systems presenting higher-pole moments.

Similarly, Eq. (5.5) yields, for micro-systems possessing the tetrahedral symmetry,

195008

?}(rpq) = W ('Qxyz)tg(gxyz ]?rp_q149 (58)
or octahedral symmetry
R 366080 -
il!(qu) = _49— (dsmczz)zg (@xxzz ]'27' pqls . (59)

Eq. (5.8) together with (5.4) determines the contribution to F, from octopole-octopole
interaction of tetrahedrally symmetric micro-systems, whereas Eq. (5.9) determines the
contribution in the case of hexadecapole-hexadecapole interaction of octahedral micro-
systems.

A further contribution to F, within the framework of the second approximation results
from the cross term (¥, ¥, ;5. On restricting the problem, as above, 1o pairwise correlations,
we obtain (V; V) = 0 for the case when the dipole polarizability tensor & is isotropic,

and (V V&) #0 if the tensor a is anisotropic and if, moreover, the micro-system spossess
a non-zero quadrupole moment M® = @. In this latter case we have, by (3.8) and (3.14),

Ni  Nj
1
Va= =g 2 D, ) M OTR M, (5.10)
g p=1 g=1
1 i Ny Ng
Vl(rl).gi =15 Z Z Z Mg): (2)T1(>? Ol (I)Tg) : Mg)’ (5’11)

and, on isotropic averageing,
) N; Nj

VaVih = = gz D0 D0 3 M (M - M) (e : MP) (P - 1Ly 1 O @),
7 pm1 (5.12)
Considering that
(PTG - OT®) :OT® — 1080 s, (5.13)
we finally obtain by (5.12)
16
2VaV ey =— 35 xixi{(oti : ©;) [@;: (O - ©)] +
. A
+[0;:(9;-9)] (¢;:0,)} f f Tog R, 7)) dr,dr,. (5.14)

For micro-systems having the axial symmetry, this result reduces to

2Va Vi =—§§— %:%;0;0;{0,;0F + Ot 0} f Tog (W, v )drydr,,  (5.15)

i
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wherein #; = (2 —a®)3a; is the anisotropy of dipole polarizability of a micro-system of
species 1. It is 1mmedlately obvious that in the case of isotropic polarizability (x; = 0) the
contribution (5.15) vanishes.

If in averageing the term (¥, V%)) we take into consideration also ternary correlations,
a non-zero contribution to F, is obtained in the present approximation even if the polariza-
bility tensor & is isotropic. Indeed, by (3.8), (3.14), integration over angular coordinates
and on neglecting the anisotropy in a, we have a non-zero facter

(M(n) [n] (n)T(m) [ ]M(M). (M(n) [ ] (n)TSr) oty (1)T1('Zl) [ ]M(m)) _

1 n 3 m m, n m n m
T @1y O ) (I (I MEP) e (VT () (VT - V1),

(5.16)
and we find finally

Nt Nj Ng

Vi = Z Z Z Z O (19, T 1), (5.17)

itk p=1 g=1 r=1
. gFEq TED
r#q

with

Ccross % —1)n22tm(n ! m!)? n n m m
n=0 m=0

oy (OTEn+m] (PT5) - T} (5.18)

Using the definition (2.14) and the ternary distribution function as given in Eqs (2.17),
we have

VaVid = = x,x,xk f f Qi (1, g, 1) nﬁfg(rg,rq,r,) drydrdr,.  (5.19)
itk

With respect to (4.6), (5.18) now assumes the form for axially-symmetric micro-
systems

cross nzn tm (n (m; nyp(m. Yy (m
Qi (T To 1) = Zlawp@maw VM) VT4 m) (VT VT

(5.20)

Restricting ourselves to the quadrupole-induced dipole-quadrupole interaction, we have

from (5.20)

2 2 0 0) /(0 1 1 0 2 20 1 (1. 1 1)
:;;ISSS(,,. r, ,r.r) = ef¢; “k( )T( )(( )T( ). C )T( ) {e ( )T( ). (( )Tpr) . ( )Tiq )_

2((1)T(1) (I)T(O)) (1)T(°)}cx + {62@2(0)11(2) (“’)Tf,l) . (1)Tg)) +
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+ O2AOTY  OTO) @O, #, i OTD + (VT . DDy
{M O OTE : (VT - OTD) G2 (OTY - OTD) ; OTDY g ¢

252 (2) (2) (2) (1) Mmpe)
900 0;0;a,T,) : (PT, T,))— (5.21)

The cross term (V¥4 vields also further contrlbutlons to F, from induced moments
of higher order. However, we refrain from calculating them here. Similarly, within the
framework of the second approximation to F, one can calculate the contributions due to
the term (F%,4). The latter, however, are of the second order in the dipole polarizability
or higher-order polarizabilities, and in general play but a smaller role as compared with
the contributions calculated above.

6. Further approximation to F,

We shall evaluate the higher approximations to F, including the terms (V2 and (VH.
To avoid complicating the final results, we restrict at first our further calculations to the
case of an assembly of dipolar molecules for which Eqs (3.8) and (3.14) yield for the total
tensorial potential energy,

N; Nj N; N
B W (1) LWty Wr(L)
£ 9D 30 JRILEARUEE S 30 3030 WRRCA SRS I
ij  p=1 g=1 ik p=1 g=1 r=1

(6.1)

If we assume for simplicity that the dipolar molecules are isotropically polarlzable we
find from (6.1) by averageing over all molecular orientations

= XY S i ) TR T 2T T (TR T ¢

ij p=1 g=1
q#p

1 Ni¢ Nj Ng

D, 1 1 Dp(1
~ 5 Z Z /“, Mk(( 7k q) ¢ )Tgr)) . ( )Trz)’ (6.2)

gk p=1g=1r=1

qaFPrFD

r#gq

t ) 150 Z Z Z ,u“u] (])T(l) (1)T(1))2+2((1)T(1) (1)T(1)) ((I)T(l) (DT(I))}

ij p=1 g=1
a#p
1 Ni Nj Ng
- Z V ul M] 12 f((l)T(l) (1>T<1> ((1)T<1> <1>T<1>) + 2((1)T<1> ‘DT“)) (“’T‘D “)’1‘(1))}.
90 L
gk p=1g=1 r=1 .
qFEp r#£ D
r#q

(6.3)
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On introducing herein the distribution functions (2.17) we find finally

6
5 ]/’Lz/";(“uuj +1u‘1 )ff 12 (2) ,rq)drpdrq+

1
+ 5 Txxkl"tl Auj Hr fff p_qs q—r5 1;5{9(/" )(rqr ' ,rrp)(/rrp .’rpq)—

l]k

Vi) =

9.2 2 9.2 2.2 2 3
312 (P gy 1) 23121,y ¥, V2312 (1, 1) 24200 P B A (w1, 1, ), drdr,,

Pq qr TP

(6.4)

7 =3 52 i 1 f f o (1, )T, dr

1 ,
+ 5 xxxklu“uj ;uk fff pqs ;'8 ) +3rpq qr. nf?/a)(rp’ /rq’ rr)drpdrqdrr'

ljk
6.5)

Thus, by (4.9), (5.7), (6.4) and (6.5), the tensorial part of the free energy of the assembly

of dipolar molecules is given, on retaining only terms linear in the binary distribution function

by
F = zﬂtlh Fo12
;= x,x, 1(“1/‘! + W “J) qu 5k2T2 Tpg"+ o) +

2,2 3utul - .
+ ’M( - 2—5’—;% i )} nP(¥p 1) dpdr,. (6.6)

We likewise calculate :the higher-order contributions in the case of micro-systems
having a quadrupole moment, i.e. when the total energy of tensor interaction is the sum of
the energies (5.10) and (5.11). However, we shall restrict these supplementary calculations
to the thrird-order approximation resulting from electrostatic interaction (5.10), for
which we obtain with the accuracy of ternary correlation

T = _'§5§§§ oy (M (M- ME)] (M - (M - M) x

i

% f f (OTE : OTP) ; OTEY By ) dr, dr,+

1 )
— 5z O, W (M M) (M : MP) (M : M)

x [ [ JA@TE:BT): DTy 0 (r, 1, 1) drydr, dr,. (6.7)
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Omitting the term with the ternary distribution function, and considering that

(BT : OT®) : OTD _ 19440, (6.8)

pg ?

we have for axially-symmetric micro-systems

Th> =22 s 076} f f Toq i) (8, P )y (6.9)

g
By combining Eqs (4.9), (4.18), (5.7) (5.15) and (6.9), we obtain F, for an assembly

or quadrupolar molecules in the form of

3 i s, 28 -
Fo=—7 Z %% / f {(a,-@,%r@?aj)rpm T @O+ 07 g)rs "+
y

24 . 14 7
~ 55k 00005 + Oy, 157 &6 (’qu -
720,60, _
— W rpql5)} g (1, 1 )drsdr,. (6.10)

7. Application of F, to two-component systems

The tensorial part of the free energy evaluated in Sec. 4, 5 and 6 can be expresesd
formally as

2 3
Ftensorial = Z XiX; Fzs) + Zk: XXXy E'j(k) +o (71)
i i

where
- ]. in 1 e —
FP = — 3 f f { 5000 + s 05 r0) +O(T 2)} Py rdr,dr,  (1.2)

determine the contributions to F, arising from pairwise interactions of multipolar micro-

systems as given in general by the quantities of (4.5), (4.15), (4.16) and (5.5), and

1 Cross U ‘
FS**,Z = = 47 f f f {Q,-jk (rp, 7, 1',)+0(T—1)} nfﬁ(’rp, 10, T)dVpdr dr, (7.3)

— the contributions to F, from triples interactions of multipolar micro-systems given by
the quantity of (5.18).

The expression (7.1) with (7.2) and (7.3) yields in appropriate special cases the result
derived previously by Pople [2] and by Barker [3].

If, in particular, a two-component system is considered, Eq. (7.1) yields, on retaining
only contributions from pairs interaction,

2 (2 2 2 (2
Frensorial = a1 F} :f1) + 22, F {2) + %, F; 52)’ (7.4)

where F{P and F§2 account for the interactions of like pairs in the pure components 1 and 2,
respectively, and F& corresponds to the pair interactions between unlike micro-systems of
component 1 and component 2.
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We shall now apply these expressions to some special cases.
Let us assume that the molecules of system 1 are dipolar and those of component 2
quadrupolar and axially-symmetric. In this case we obtain by Eqs (6.6) (6.10) and (7.2)

- 2 -
F£2) = ff{“l/"% (rpq6 Skg]lwz quz) +

6kT ( gt 253&}2 ’P_qu)} niY (1, ) drydry, (7.5)

A - _f [ {W i ( SkT) o "_"8} nid(rp v)drydre  (16)
FO 2 f ] {ag@zrpq 17 S?czT ;ql"+ 3,030 +

- ‘3?% @y%0pg — -%ﬁ% r;ﬁ} (15,1 drydr,. . @

In particular, when y, == 0, the foregoing expressions conform to the mixture of a mon-
atomic component with a quadrupolar component, whereas for @, = 0 — to the mixture
of a monatomic component with a dipolar component.

In the case of a two-component system, wherein the one component again consists
of dipolar molecules and the other consists of tetrahedral molecules possessing the octopole
moment 2,, Eq. (7.2) vields, in addition to F{® given by (7.5),

- — L f f {azmrm ( ; m) %, } Wy digdry  (19)
F@® = — — f [ { o Q2258 + 139585? ;}4} nSD(1p, 1) drydry. (7.9)

On putting in the above expressions u, = 0, we obtain formulas for the mixture of

a monatomic component and of one consisting of tetrahedral molecules with octopole
moment £2,.

Eq. (7.9) with only the temperature-dependent term accounts for the octopole-octopole
interactions, and yields, the result derived by Parsonage and Scott [4].

For a mixture composed of quadrupolar and tetrahedral molecules, we have by (7.2)
for the contribution to F resulting from the interaction between the quadrupole @, of
component 1 and the octopole £, of component 2,

Fp = 5TT@292 f f ol @ (1, 1,) drydr,. (7.10)

In the same way, we can discuss the tensorial contributions to the free energy for other
special cases.
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8. Application to the equation of state of a gas mixture

From (1.1), the equation of state can be expressed, in terms of the free energy, as

PV L8R} _ 1 (o e
NkT =~ kT \oV/r,n ~ VET \90/z, 5’ ®.1)
where ¢ = N/V is the molecular number density.

In the case of a not too strongly compressed gas mixture, the binary and ternary distri-
butions functions can be expanded in the form resulting from classical statistical mechanics,

nP(rp 1) = 0% exp {— %T—)} {1 +o0 Y u f Firan) fino) drr+0(@2>}, 62)
k

Uik\Tpgs Tars Ty
Rrran) = oo |- L L AT ®3)

with the function _
ug(r, .
it = oxp | 0}y @4

Here, u;(r,,) is the central forces potential energy of interaction between molecules p and ¢
of species i and j, and uy,(r, 1.p) — that between three molecules p, ¢ and r. of species
i,j and k, respectively.

With regard to the expressions (2.7), (4.14), (5.4) and (5.19), Eq. (8.1) now assumes

the form

q’ rqf’

m =1+ = Z %2 Bi+ 7 Z 2252, Cip+ -, (8.5)
ijk
where .
Bz'j — Bzgjentral + Blt;nsorial (86)

is the second virial coefficient composed of a part describing pair central interaction between
molecules of species i and j,

oo
central
Bije ral __ —-27'5foij(rp rpqdrpq, (8.7)
0
and a part resulting from the tensorial intermolecular forces,

ensori 2aN in wi(r
B;J' Ve T { i d( Tog) + 577 2kT Qu (o) +O(T~ 2)} °Xp {— ‘%} ’Eqd’pq' (8.8)
0

From Eq. (8.8) we can obtain immediately the result derived in the previous papers
for dipolar and quadrupolar unlike molecules [20, 23], octopolar molecules [22] and
hexadecapolar molecules [16].
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Similarly, one can obtain an explicite expression for the third virial coefficient Cy, of
Eq. (85).

In concluding we should hke Lo draw attention to an interesting fact arising from Eq.
(8.8). Namely, if we use on the one hand the values of the well-known central forces para-
meters from viscosity data and, on the other, the experimental data for B, we can estimate
from (8.8) reasonable values of the quadrupole moment of axially-symmetric molecules [20]
or octopole moment of tetrahedral molecules [22]. Lately, Orcutt [24] has solidly established
this method and extended it to a wide range of temperatures and has evaluated reliable
values of the molecular quadrupole moments of H,, Ny, CO,, and.C,H,. Hence, investigation
of the tensorial contributions to the second virial coefficients, constitutes a sure and unfailing
method of determining the quadrupole, octopole, etc. moments of molecules. This method
of determining molecular quadrupoles or octopoles, although indirect, is of great conve-
nience in its applications and leads in a simple manner to results whose accuracy is in many
cases satisfactory and reliable.

APPENDIX

The total tensorial potential energy of assemblies of axially-symmetric micro-system.
With the accuracy to the hexadecapole-hexadecapole interaction, Eq. (3.8) yields

Ng
(0) (0) (0) 0) (0) (O)(L) , g _ @, W0 g0 __
Z Z Z {M T M Mpi qu Maf +_J‘/[?i qu qu

i p=1 ¢q=

MO, O, gD () (0) (2> (2 (2) . (0 )
MP-OTL. MO (M TE M+ MP : OTO M) +
1 N
@, @ (2) (2 (2) (2) (1) 1) . O O@3) ; 3 __ 33 BGy0)ng(0)
(M TE : MO —MP : OTY - M ) = (Mp,. T&: MO MY : OTOMY) +
-+ i M® . @Qp@ . (2) (M(l) RO LYY 10 4 M(3) (3)T(1) M(l)
9 pi pq ° i pqg T4 Pt )+

1 1 .
I YRR Y (O] 4) ; (O 0) 2). (Dn(3) . 3 : 2). 2
+ 1op (MPOTQ :MP+MD s OTOM) — — (MY @1 : MY M2 : OT2: M) +

1 1
L, Q@) 4) 4) s (L), 1 3) . Y.
+ o5 O - T i MP—MP  OT0 - M) — = M : VT30 : MP +

1
2). 4) 4) + (4 2). 2
o (MO MY+ M OTE:MP) +

+ (M<3> :OTW: MO_MD: OTS: MO) +

M(4) (4>T(4) M(4) A Al
1575 11025 i } A1)

Here, the successive terms correspond fo the charge-charge, charge-dipole, dipole-
dipole, charge-quadrupole, dipole-quadrupole, charge-octopole, quadrupole-quadrupole,
dipole-octopole, charge-hexadecapole, quadrupole-octopole, dipole-hexadecapole, octopole-



415
octopole, quadrupole-hexadecapole, octopole-hexadecapole and hexadecapole-hexadecapole
interactions, respectively.

By squaring ¥ given by (A.1) and then carrying out integration over all orientation

coordinates we obtains Eq. (5.4) with
G0 = E)MP)2+ . ((MOPMD - M) £ (P - MOV i+
+ % {(M;~<°>>2(M;2> : M) +5(MP - M) (M - M) +(M® : MP)(M)?} 78 +
+ {3( M<°))2(M(3) M®) +35(M® - M{")(M®: M) +
+35(M® : MP) (M - M) +3(M®: M®)(M)2} -8 4
+ % (MO M : ME) + 21D - MPYMP: MP) +49M® : MP)MP : M) +
+21(MP : MP) (M - MP) + (M : MP) (M) 17,0+
+ 1—33 BMP - M) (M®© : M®) + 21(M® : MP)(M® : M) +
+2i(Mf3> : M®) (M® : M) + 5(M® : M®) (M® - MO)} 124

{5( M(2) M(2)) ( M(‘D M(4)) 4 9( M(3) M(3)) ( M(3) M(3)) +

525
@) 4) (2 . (2) —14 (3) (3) (4) {4)
+5(M® : M®) (M : M®)} 152 e {(M : M) (M® 1 M) +
_|_( M(4) M(4)) ( M(3) M(3))} ~16 ]2823(')05 ( M(4‘ M(4)) ( M(4) M(4)) —18 ( A.2)

Using (4.6) and the definitions of (4.8), we obtain from these expressions the result of
(5.7) for axially symmetric micro-systems. Analogously, by (4.10), Eq. (A.2) reduces to
(5.8) for tetrahedral molecules and by (4.12) — to Eq. (5.9) for octahedral molecules.

Denoting in the definition of (3.6) for simplicity T,, =7, we have for the multipole
operators of successive orders (the properties of the operator 8® are the same as those of
the spherical harmonics functions discussed e.g. in ref. [13])

SO =1,
SO — 7y,

S® — %(3r11‘2—r2 U.,),

S® — % {157,151, —3r¥( Uy s+ Uggry -+ U, 1)},
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S® = % {1057, 7,737, — 157Uy 131+ Up 1y 1y + Uy 1y 1, + Uy 1y 1+

+ Usaay+ Uy 11 73) +3r4( Uy Ugy + Uy Ugy + Uy U)o

and, generally,
S® = % {@Cn—1)!rmr,... r,—(2n—3)11r23 Upts...7,+

+@Crn—5Y1 A X UUs s ... 71— 2n—7) 11 18 Z U U Uy ... ot .
+(=1* 2n—2k—1) 11 1% X Uy, ... Usp_1, 2h72k41 --- Tt oo u )y (A.3)

where Uy, is a unit tensor, (2n—1)!! = 1.3.5.7...(2n—1), and XU, r5...r, etc. are sums of
the terms obtained from the one written by interchanging the suffixes 1, 2,...n. The number
of terms in the last sum in (A.3) is equal to n!/{2%n—2k)1k!}.

In terms of the operators S® defined above, the multipole interaction tensor of (3.4)

is of the form
TI(,") ( 1)n+1 n! r-—(2n+1)s(n) (A4<)
where Sg’q) is given by Eq. (A.3) if » is replaced by 7,,

With Eqgs (3.5), (4.8), (A.3) and (A.4), we obtain for the respective terms in Eq. (A.1)
of axially symmetric micro-systems, up to the octopole-octopole term,

MOOTOMO — —¢.ert,

©) O , pgL) _ —3 .
Mpi qu qu = €Ty (sq rpq)’

1) . (Ul 1 -5 , 2 .
Ml(n') 3 >T;7'1) 'Méi) = THiHiTp, {B(SP 'rpq)(sq rpq)—rpq(sP sq)}’
(0) (0)(2) (2) __ N 2
M, T, M = — — e,@]rpq {3(s, 1,210}

9
Mg - OT :Méfz‘) D) 197,51 {5(8, " 1,,)(8, 'rpq)z_’:q (Sp *Tpg) T2(8, 1, )(S, - 8,1}
OOT® ; O — 15 —7 2
MPOTS : MS - einrpq {5(s, "1, )3 =312, (8, 1))}

MP :OTP : M®P = — 2= 0,0,1-2135(5, * 1) XS, Ty =52, [(8, "7, +

(8, 1p)* +4(s, rpq)(sq 10)(S, S, +r:q [L+2(s, - 8,)7Tt,

15
Mg) ) (I)TS? MR = — 9 l“z'Q 7—9{35 (s, - pq)(sq ) Spq)3_15 rﬁq (s, 'rpq)(sq Tyg) -

q7

+(8, 1) XS, 81 +378, (5, 8},
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225
MP BT : MD = — 0,25 1163(s, - 1,) %S, 1,3 =T, [(8, 150+

[y 24
+3(s, "rpq)z(sq ) F6(8, < 1,)(8,  1,)%(S, - 8.)] +
3r3 (8, 1) +2(8, - 7,)(S, - S)+2(5, " 1,)(S, - 8%},
MP: OT®: M® = — % Q0.5 1{231(8, +1,)3(8, " 1p,)—

%1 pg
—63r5, [(8, 102 +(S, 'rM)2+3(sp W) (Sg T )8y - SIS, "1 ) (S, 1)+
+21r:q (s, - rpq)z(sp “8,)+ (S, Ty (8y Ty +(S, 1) (S, - 8,) +
F2(8, 1) (S, 1, (S, - 8% =13, [B+2(S, - )2(S, - S} (A.5)

where s, is the unit vector along the axis of symmetry of the micro-system p.

The potential energy of induction up to the octopole- octopole ineractions is given
by Eq. (3.14) as follows,

Ny Ng

Vg = 1 Z Z Z Z MOOTY - g, - OTO MO —MD <0)T<1> oy, - VTD - MY ~

gk p=1 ¢=1 r=

1) . (W) . . (L(0) B0 1 . W) | Q) . ag)
—Méi) ()TI(,,) %, ¢ )Tﬁq M;]))—M;,.) )Tp, o, - Tﬁq) Méj +
1 )
0) (0)(L) . NN LN Y () 2) . @) | 1)rg(0) A(0)
+ 3 (MI(,,.)( )Tj(,r) %, (¢ )qu) .M;j +M1§,- : € )T;r %, - ¢ )T( M( )+

1
@, W) | L@ L ag@ g . @), R, LIV [0V
*+ -3_ (Mﬁi ¢ Tf(’r e ¢ Trq 'Mq]' Mzgi i Tpr %k Trq qu)+

1
0) (OpQ) . 13y £6) 3) 3) T @) . Q0) g
T (M;,-)( )T;,) o, - )T( ) M( M;,-) :‘J( )T;,) &%, (¢ )Tﬁq Méj))—!—
L1 M® . e, eV, LMY (O]
+ 5 pi - pr ek rg g T

1 .
__ @ . L) . L3 . 3) (3) T (3)(1), . (D), @y
B (M - PTL - oy, - VTP : MP+ MP T OTY a, - PTE - M)

1
2) ., (2 1 1 3 {3 3T @ 1, @ 2) , 2
— 5 M OTY - OTY: MP-MPT OT) - - VT - M) +
- 2—;5 M : OTY o, - OTO T YD — (A.6)

Hence we obtain again by averageing over all orientations Eq. (4.4) with
1
0P, = 5 (MO + (MO} 1+ (M - ME) + (M - MP) ) 1,
4 » \
Ho(MP : MP)+(MP - MP) a P+ — (M M)+ MO M) a1+
(A7)



418

In the case of micro-systems possessing the axial symmetry, the successive terms in
Eq. (A.6) are, up to the quadrupole-induced dipole- quadrupole term (the anisotropy in the
polarizability tensor is neglected), of the form

0)(0)p(1) | . OpOaF0) __ —3 .
MPOTY - g, - OTOMO = cie0r b3, -7,),
0 (O | L@ (1).{‘11)_ . 2 .
Mj(:i)( )T1<>r gy ¢ Trq J<'q € :u](xk pr rq {3( (S ’l" ) ’rq(sq rpr)}a

1 1 1), 1 1), D _ . . .
Méi) - ¢ )T;r Xy ¢ )T( M( = Wy Il’t]“k pr rq {9 pr rq)(sp_ rpr)('gq 1'”’)—

3r§r(sp ) ,rrq) (sq : Trq) _'Srfq(sp : rpr)(s ) +r, pr rq(s 'S )}

9
0) (0)rL) L D) (2 _ -7 . .
MR OTS - o, - OTD : MP = 5 00475, T {5 (W 1, (S, * 1) P —

- rfq[(rpr .rrq) +2(S s r)(sq ) rrq)]}’

, 9
1 L 1 2) . 2 N . . —_
Mj(n') ¢ )Tj(ar) C %y ¢ )T£q> . M;j) = ;uz("’)j“k pr rq7{15( "rq)(sp rpr)(sq rrq)z

510(8, 7, (8, rrq) 3170 [17g(Ty 1)(S, - 1) +
rpr) (sq : rpr) (sq : rrq)] +rprrrq [(S rq) +2(sq : rrq)(sp : sq)]}’
M2 :OTQ - a, - T M = ~4—- 00,047, {25(1,, -1, )(8, *Tp) S, T,,)° —

- 5]‘ [( . Trq) +2(sp : rpr)(sp ) rrq)](sq ) rrq)z—srrzq[(rpr ' Trq) +
""j z(sq : rpr) (sq : rrq)] (Sp : rpr)z +rprrrq [( : rrq) +2(Sp ) rpr)(sp . rrq) =+
F2(8, 1) (8, T, +4(S, 75,)(S, 1,)(8, 5] (A8)

By appropriate simplifying assumptions we can obtain immediately from Eqs (A.l),
(A.5), (A.6) and (A.8) the result derived previously by Debye [7], Keesom [8], Falkenhagen
[9] and others (ref. 2. 3, 11, 12, 15).

The energies of Eqs (A.1) and (A.6) up to the terms correspondmg, respectively, to
charge-charge, charge-dipole, dipole-dipole, charge-induced dipole and dipole-induced
dipole interaction, are discussed in detail by Bellemans and Stecki [25, 26] in their molecular
theory of electrostatic interaction between ions in a solvent.
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