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The theory of the electric polarization of a multi-component system is developed on the
basis of the existing statistical theories. It is assumed that a molecule p has in general a 27-pole

permanent eleciric moment M;,n) and the 27-pole moment P;n) induced by the total electric
field of order n (external E® plus molecular FI(,">). A general expression for the n-th order molec-
ular field FI(,n) at the molecule p is obtained in terms of the permanent multipole moments
M;n), 2n.pole — 2M-pole interactions tensor (”)Tg;) between molecules p and ¢, and n+m

rank polarizability tensor () Aj(,m) characterizing the polarization of the 2”-pole moment of a mole-
cule p due to the electric field of order m. The fundamental equation thus obtained for the dipole
distortion polarizability Pp of the medium is discussed in some orders of approximations. In the
zeroth-approximation, when multipole interactions between permanent moments of the molecules
are absent in the system, the calculation of Pp is performed to the third power in the dipole
polarizability and first power of the field gradient quadrupole polarizability, of the molecule.
In this case Pp is formally expressed as a power series in molar fractions, whose first term repre-
sents the additivity rule, while the subsequent terms account for deviations therefrom. By
appropriate simplifying assumptions these results reduce to the known formulas. In further
approximations the temperature-dependent contributions to Pp resulting from the non-zero
multipole interaction potential energy are calculated in the case of dipolar systems, quadrupolar
systems or systems of molecules possessing both dipole and quadrupole moments. The effect
of anisotropy in the dipole polarizability of the individual molecules is also taken into account.
These calculations are performed for simplicity in the pairs correlation approximatiort only.

1. Introduction

The effect of molecular interactions on the electric permittivity ¢ of a dense medium has
been the subject of many experimental and theoretical investigations, and continues to
present considerable scientific interest. It is well-known that molecular interactions of
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various kinds lead to deviations from the Clausius-Mossotti equation

-j-jr—; V= %” Ne (1.1)
of a substance of volume V (per mole) containing N (Avogadro number) identical nondipolar
molecules possessing the constant electric polaryzability « (polarizability of an isolated
molecule independent of interactions with its neighbours).

In the case of nonpolar substances the deviations from (1.1} are small, whereas in dipolar
substances the deviations from the Debye-Langevin equation,

e—1 4r 2
S V=5N (oc—i— 3‘;?) (1.2)
are particularly large (u is the permanent dipole moment of an isolated molecule and T —
the temperature).

By Eq. (1.1), the Clausius-Mossotti function is independent of the temperature and
density of the medium. This holds strictly only in the ideal case of a system of noninter-
acting molecules, e. g. a perfect gas. In dense systems of interacting molecules the C—M
function is not a constant but is density — or temperature — dependent.

The deviations from Eq. (1.1) can be satisfactorily explained on the basis of the classical
statistical theories initiated by Kirkwood (1936) and Yvon (1937). In those theories, the
effect of fluctuations in the induced dipole moment of molecules with constant polariz-
abilities gave rise to a small increase of the C—M function proportional in a first approxi-
mation to the density. The Kirkwood-Yvon theoreis were modified and further developed
by Van Vleck (1937), Brown (1950), De Boer, Maessen and Seldam (1953), Mandel and
Mazur (1958), and others. Jansen and Mazur (1955) using a perturbation method calculated
the variation of the molecular polarizabilily due to pairwise interactions of molecules and
obtained in this way a further increase of the C—M function with the density.

Another effect which contributes to the C—M function of nondipolar substances and
depends directly on the temperature arises from the statistical mean square of the dipole
moments induced in the molecules by permanent multipole moments of neighbouring
molecules in the absence of an external electric field. Buckingham and Pople (1955), Zwanzig
(1956), Jansen (1958) and Johnston and Cole (1962) calculated this effect from permanent
quadrupole moments by using a method of expansion of the C—AM function in a virial
type series. Earlier, a virial theory of dielectric polarization in dipolar imperfect gases,
analogous to Mayer’s cluster expansion, was proposed and discussed by Harris and Alder
(1953 b), and extended by Harris (1955) to include the effect of fluctuations in the dipole
moments. In the case of quadrupolar gases we shall take into account the additional temper-
ature-dependent effect resulting from the presence of the quadrupole-quadrupole
and incluced dipole-induced dipole interactions between molecules, which cannot be
neglected in comparison with the above-mentioned quadrupole-induced dipole effect
alone (Kielich 1962a). The effect from higher permanent multipole moments was calculated
by Johnston, Oudemans and Cole (1960) for the octopole moment of like tetrahedral
molecules such as methane as well as by the present author for the case of unlike
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molecules of arbitrary symmetry presenting an octopole moment (Kielich 1962b, 1963)
or a hexadecapole moment (Kielich 1964). The general and systematic discussion of the
virial expansion method of the dielectric constant of imperfect gases is due to Hill (1958)
and, along different paths, to Kaufman and Watson (1961) and Isihara and Hanks (1962).
Recently, Isihara (1963) formulated an interesting theory in which the Clausius-Mossotti
function of a nonpolar fluid is expressed in terms of quantum-mechanical cluster integrals.

Other original treatments of the dielectric problem have been proposed by Onsager
(1936) and Kirkwood (1939). Kirkwood in his statistical theory of the dielectric polarization
of dipolar liquids considers the interaction of a spherical specimen of the dielectric of macros-
copic size, surrounded by vacuum, with an applied electric field, and uses the Onsager model
to derive his final formula. This semi-macroscopic treatment was subsequently modified
and developed in various ways by Frohlich (1949), Harris and Alder (1953a), Brown (1953),
Harris (1955), Buckingham (1956) and Cole (1957) (see also Kielich 1958).

Fowler (1935) and Debye (1935) introduced rotational coupling of a dipolar molecule
in the internal field of a surrouding medium of quasi-crystalline type. This method, which
bases on a concrete molecular coupling model and the local field of Lorentz or Onsager
type, has been used and further developed by Piekara (1937, 1950), Anselm (1943), Frenkel
(1946), Piekara and Kielich (1958) and others.

The statistical theories mentioned above refer only to one-component systems of identical
molecules. The virial theory of the C—M function of a compressed gas mixtures has been
given by Buckingham and Raab (1958) (see also Kielich 1962 a, b), and an analogous theory
of the Lorentz-Lorenz function has been evolved by the present author (Kielich 1962 ¢, d).
We should also mention that Bullough (1962) examined in general higher-order fluctu-
ation effects and higher induced muliipole contributions to the refractive index of two-
-component systems.

In the present paper, the foregoing statistical theories of electric polarization of fluids
are extended to the case of an arbitrary system consisting of molecules of various species,
where interactions of permanent multipole moments as well as anisotropy in the polarizabi-
lity of molecules are considered. This theory leads to a formal expression for the total
electric polarization of a multi-component system in the form

Pr= % V= Z xPP+ Z i PP+ Z i PSP+ (L3)
i i ik :
where x; is the mole fraction of the i-th component of the system of volume V.

Since P{), the total polarization of the i-th component of noninteracting molecules,
depends neither on the concentration nor on the density of the system as will be shown
from Eqgs (1.1) or (1.2), the first term in (1.3) expresses the well-known additivity of Pp. The
remaining quantities P# and P{¥® are expressed, respectively, by the binary and ternary
distribution functions n,(-jz), nS’-’,Z and are non-zero only for a system presenting non-
-zero interactions between pairs, triples, etc. of molecules of various species. In this way if
P and P{¥® depend on the density, on the temperature as well as on the concentration,
then the second, third and higher terms in Eq. (1.3) constitute a measure of the deviation
from the additivity rule of Pj.



308

It is well-known, that the total electric polarization P is composed of the distortion
{or deformation) polarization Pp, which represented the direct effect of the applied electric
field polarizing the molecules of the system, and of the orientational (or directional) polar-
ization P, arising from the statistical effect of alignment of the molecules in the direction
of the external electric field. In the first part of our paper we are interested only in the
distortion polarisation Pp. The explicite expressions obtained for P& and P#® by tensorial
formalism, contain in the zeroth-approximation of our theory, besides the Kirkwood-
Yvon effect of fluctuations in the induced dipole moments a similar effect from quadrupole
moments induced in the molecules by the molecular field gradient. In this approximation
the quantities P& and PY® are functions of the density but not dependent directly on the
temperature (obviously in this case there is indirect dependence on the temperature through
the distribution functions nﬁ?) and nff,z) The additional contributions to P which depends
diretly on the temperature is obtained if in the calculations of Pp the multipole interaction
potential energy and the anisotropy of dipole polarizability is taken into account. These
calculations are performed for the case of systems consisting respectively of dipolar molec-
ules, quadrupolar molecules or of molecules with dipole and quadrupole moments. To simplify
the problem, however, the effect of molecular interaction on the polarizability of the molec-
ules will not be considered in explicite form.

2. General theory

Let us consider a homogeneous medium of volume V, macroscopically isotropic
in the absence of external forces. The relationship between the electric displacement
vector I and the mean macroscopic electric field E,, existing within the medium
is expressed by means of the electric permittivity & through the well-known expression

D =:E, @

On the other hand, since in a external electric field the mediufn undergoes polarization,
thé electric displacement vector can be formally expressed in the following general form
(for comparison, see Jansen 1958)

B [ . 2n+1(n_|_1)! " D)
D =E, 4 ZO (1 gy VPO, 2.2)

where P™*D s the electric polarization operator of order n+1 of the medium, V is the
differential operator, and the symbol [n] denotes in Jansen’s notation that the product of
the two n-th rank tensors I and P™ is contracted n times.

By (2.1) and (2.2) we may write the electric permittivity of an isotropic medium as the
following general equation:

-

(e—1)E,, = 4 Z (—1) _2-(—;-:;(-:‘%1,)' Palp] P @+ | (2.3)
. n=0
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from which we have in approximation

(6—1)E,, = 4 {P(D— % V-P® 4 % vy P®— } (2.4)

Here, PV = P is the first order polarization, or dipole polarization vector, P® = Q is
the second order polarization, or quadrupole polarization tensor, P® = O is the third
order polarization, or octopole polarization tensor, etc.
In the case when the applied electric field E is homogeneous, and when for convenience
the medium is represented as a macroscopic spherical sample, in vacuum, for which
= (e+2) E,/3, Eq. (2.4) yields by statistical mechanics in the dlpole polarization
approxxmatlon

e—1

4r dn
-———8+2 = —37 <M . e>E = W <ME>E‘ (2‘5)

Here, My = M - e = VP - e is the component of the total dipole moment of the spherical
sample in the direction e of the applied electric field, and (Mp)y denotes the statistical
mean value of M in the presence of an external electric field defined as follows:

Uz, B)
f Mg exp { } T
(Mg = uth (26)

with U(, E) denoting the total potential energy of the system when the configuration is 7
and the external field E.

In the case of a weak electric field we can restrict ourselves to the linear approximation
in E when expanding (Mg)y in power of E, and Eq. (2.6) yields (Mg = 0 at E = 0)

(ME)E = {gf <ME>E}E:0 E = K%) T <ME zg >} E, (2.7)

where the brackets { ) without lower index denote the statistical average at zero external

field
U(z, 0)
o f@exp{— T }dT s
< > - U(T, 0)1d * )
Jorl= i)

with U(z, 0) denoting the total potential energy of the system at configuration 7 in the absence
of an external electric field.

By (2.7), Eq. (2.5) yields for the total electric dipole polarizability of a medium, or
Clausius-Mossotti function,

e—1 ’
=2V = 9
Pr ;) V = Pp+Po, (2.9)
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where

- 47 QME
PD—§< oF >, (2.10)

is the distortion polarizability of the medium, and

. 4 U\  dm .

is its orientational polarizability.

We assume that in Eq. (2.8) the total potential energy of the system U{z, 0) can be split
into the central-force part U, (1), which is a function of the set of IV position vectors
rN=7,,7,,...7y of the molecules contained in the volume ¥ only, and the tensorial-force
part V,(rN, ™) dependent both on #N and on the angular coordinates w” determining the
orientations of all N molecules. Considering ¥, to represent a perturbation to the unpertubed
energy U®, the statistical mean values (2.8) can be put in the form

y ( - ;lf) (@D,

1 1A .
(Yo

(D)= , (2.12)

s |1

n!

n=0

I

where

(DY = N h) f f BNy B (rh)doh, (2.13)

is the statistical average evaluated with the distributions functions of the A molecules of
the unperturbed system

e
n(rh) = W) (2.14)

(N—h)'f fexp{—— [LO)(’”—N)} drN

Here, the unveighted average of the function @ over all orientations of the molecules is

defined as
1
2(r) = 5% f f D(rN, wN)dwN with QN — f f dw. (2.15)
(&) o)

From (2.12) we obtain, to the desired approximation,

(@) = (B 7 (BVdo— (D)o (V1
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1 1 .
~ GRS {PVE+ ..} + ST (PVEHy+ ..} — ... (2.16)
Assuming N = YN, molecules of various species to be present within the sphere of

volume V, we can write in general

- 2n n1 1) g(ny) (ny) ()
M M0+ Z Z Z (2n )Y API [ 1] (‘E +F ) (2.].7)

i =1n=1

where M, is the electric dipole moment of the sphere at zero external field, N, is the number
of molecules of species i, (I)A;'}‘) is the tensor of rank 1+n; characterizing the.polarization
of the dipole moment of the molecule p of species i due to the total eleciric field E("')-{-F;'}'}
of order n,.

The molecular electrlc field F(”') of order n, at the centre of the p-th molecule of species i
due to all the other molecules of the system in the presence of an external electric field is

of the form (Kielich 1965)

m S 2703 ! )t s "y
D 35 39 ST oL P S
J g=ln,=1
wherein
(n;)TI(’V;g) = — pmpn (L) R P # q (2.19)
Trq

is the tensor of rank n,-+n, describing the 2™.pole — 2™-pole interactions between
the molecules p and ¢ separated by a distance 7, ; the differential operator V is directed from
molecule g to p. M‘(I;‘.') is the ny-th rank tensor of the 2™.pole permanent moment of the
molecule p of species { and

n, "7, Ny, Ny, s My,
Py = Z (2ny) 3 | A ns) (B +FGP) (220

ny=1

is the tensor of its 2™-pole induced moment of order n,.
In particular, we obtain from (2.20) for a first-order induced moment (n, = 1),
or induced dipole moment,

P = DAL . BV L FD) " 1w A2 (B® 1 F2) + 1 DAL (ED+FD) +..
(2.21)

where WA, WA® and WA are the tensors of dipole electric polarization caused by the
first-order electric field EW or — in brief — electric field, the second-order field
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E® (or field gradient) and third-order field E® (or gradient of field gradient), respec-
tively.

Similarly, for n, =2 we obtain from (2.20) the second-order induced moment,
or quadrupole induced moment, )

Pg = DA - (B® +Fg) + o Logo o p®) . (2.22)

where @ADL, @A® _ are the tensors of quadrupole electric polarization due, respectively,
to the electric field, field gradient ete.
From Eqs (2.18) and (2.20) it follows that the total molecular field is of the form

ny S S 2n2+nsn 'n 1 2 A 3 Mg
FP < Fl 30N N Y GV i TS Inal A gl B+

DH WP W N

% (ﬂl)Tl(";g)[nz] ("a)Agf}a) [nz](ns)T(qr:D[nd("4)A£Zs)[n5] E('ls) Ty (223)
with
Nj oo om
m) 7y Ny (ny 7 Ay,
F =) ) g, ;,< T n MG+
i g=1mn=1

A
. (2n5) ! (2ng) ! (2ny)!
% (nl)Ti(;?) 7] () Ag}a) [75] (”s)T(q’:.a) [70] Mfz.), ( (2.24)

denoting the molecular field existing at the centre of the p-th molecule of species ¢ immersed
in the medium when the external electric field is absent.

In this part of our paper we intend to discuss only the distortion polarizability of
(2.10) which for a multi-component system is now given by Eqs (2.17) and (2.23) as

A [0 ) 4o | LMW
PD_S(&E( > 1ZZ< Api
. AN 2t Lyl @) gy (g, o 4
RN DD s (o A T e AT )+
S e 2memtntny U ny gl n, !
"  T\tn g : Ny Tig - 11y .
IDIDIDIPIDIPIP N kTl

K{e (1)A1(;;13[n1'|(m)qv}()’;z)[nzl(ng)A(qrjt_a)[n’3](na)qvg';a)[nll](m)Aﬁi) . 9> + } . (225))
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This is a general equation for Pp containing the effects due to the induced multipole
interactions of unlike molecules. In the subsequent sections, Eq. (2.25) will be discussed

for some special cases.

3. The contributions to Pp, for V, =0

13

Let us first calculate the contribution to Pp, for the case when the tensorial potential
energy V, is absent. '
If the molecules of all components of the system have a centre of inversion, we obtain

from Eq. (2.25) up to the term linear in the field gradient quadrupole polarizability

_4m WAD | o e VYD . WD WY,
Zz«e A - e)— ZZZ< e+

i p=1g=

N, N; N,
Q) 4@, D (1) LA Ogp() | @) 4\
+ Z Z Z Z (e - DAY . OTD . DD Aph WA g

ifk p=1 gqg= 1r

1
-3 (e . (I)AS) . (I)Tj(azq) . (2)A$) . (Z)T(q];) . (1)141(-}@) . e>_|_“‘) -+ } (3.1)

Here, the second and third terms represent the contribution to Pp from the Kirkwood-
-Yvon induced dipole-induced dipole interaction effect, whereas the fourth term is due to
the additional effect of the induced dipole-induced quadrupole interactions. In the last
case the quadrupole moments are induced in the molecules by the field gradient of -induced
dipoles of all the other molecules of the system.

For 7, = 0 we have only the radial molecular correlation in the system and Eq (3.1)

yields by (2.13) and (2.16) for isotropically polarizable molecules of various species

Py = 3 5P+ 3 5P+ T s PO+ 62
i i ik
where x; = N,/N is the mole fraction of the i-th component of the system and
PP = 4;’ f anO,) dry, : (3.3)

4 )
PP = f {oti(it o) 158 + 5 (qiond +abqy) 138} ni (1, wg) Ay, (3:4)
(ijk)v4‘7’ ' 2.2 27,55 : 2
Pp™ = 3 | {oia[3(1pg  Tar)2—13qr 2] TpaTar — 5 %iqioal5(Fpq " 1er)®—

=330 5) pq *T'ar) Toarar } "’vk(rp’ Ty, 1y) drpdt dry. (3.5

Here, a; is the scalar dipole polarizability of the molecule of species i and g; is its scalar
quadrupole polarizability. n{"(r,) is the ordinary distribution function of single molecules p
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of species I, n ) (v, 'r) is the binary distribution function for pairs of molecules p and ¢
of species i and I and nuk
ules p, ¢ and r of species i, j and k, respectively.

For fluids consisting of molecules possessing constant polarizability Eq. (3.3) reduces

to the well-known result

Ty, T, 7,) is the ternary distribution function for triples of molec-

P9 - 4”3—” Nes. (3.6)
In this case the first term in Eq. (3.2) expressing additivity of Pp was already derived by
Lorentz for refraction, R. The second, third and further terms of (3.2) responsible for
the deviations from the additivity rule of Py result from interaction both between molecules
of the same species and between those of the various components in condensed systems.
If the molecules of all components are in general anisotropically polarizable, we obtain
instead of (3.4) (according to the definitions of (2.13) and (2.15) averageing is peformed
first over the orientations of the molecules and then over their relative positions),

(u) f {[“‘(a] aj) +(o: ;) a;] qu-l—

+ 5 [gi(oy: ) + (o a) gj] 755} n(z)("'p’ Ty drydr,, 3.7

where a, = MA® is the electric dipole polarizability tensor of a molecule of species i.
For molecules possessing the axial symmetry, we can express the polarizability tensor e,
in the following form:

o, = o;U+ a,(3ss—U), (3.8)

where U is a unit tensor, 8§ is a unit vector along the axis of symmetry, and

@ __ 0 B _ @
I R X

3a; af) +2oc(_f

(39)

i

is a parameter describing the anisotropy of dipole polarizability of an axially symmetric
molecule of species ¢ with o:(') and aEﬁ denoting, respectively, the polarizabilities parallel
and perpendicular to molecular symmetry axis.

By Eq. (3.8)
a; : o, = 3a3(1+2x7), ' (3.10)

and Eq. (3.7) yields for axially symmetric molecules
@ _ Am 2 2,1,-6
Py == {oiogjlaei(1 +2F) + (1 +2f) | rpg +

+ 5 [qiaf(1 423 +af(1 +2xF) g rpq}n,, (rp, ) drpdr,. (3.11)
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" In the case of a one-component system consisling of molecules possessing the axial
symmetry but no quadrupole polarizability (g = 0), Eq. (3.11) yields a result similar to the
one derived by Mazur and Postma (1959) for the Lorentz-Lorent function, whereas for
isotropically polarizable and identical molecules (% = O) — the result of De Boer et al.
(1953).

4. Contribution of permanent multipole interaction to Py

We now proceed to the problem of calculating the distortional polarization when mulii-
pole interaction between the permanent moments of the molecules are present. The total
electrostatic potential energy of the multi-compoment system resulting from interaction
of the 2"-pole permanent moment of one molecule with the 2™-pole permanent moment
of an other is of the form (Kielich 1965)

Fa=5 Y Y 3V Y BT MO TR M. @)

g p=1 ¢g=1 n=0 m=0

From Egs (2.17) and (2.23) we have approximately, to within the third power of the
dipole polarizability «,

Ny
d Mm-ev=2L_(m. ROPION
55 (M &)= 7= (M e)fZ;e A - e

=—'Z Z Ze Ay * (I)T(l) o e+
i p=1

N,

Ny H Nlc
+ 2 UL e VTR T ay e . (4.2)
itk p=1 g=1 r=1

We shall restrict our further calculations of Py, to the approximation of pairs correlations
only. ‘

4.1 Isotropically polarizable multipolar molecules

We assume as the first step in evaluating Py, that the multipolar molecules of the system
are isotropically polarizable. It is seen that ¥, of (4.1) vanishes on averaging over orientations
of the molecules, whereas for the average of the square of (4.1) we obtain by Eq. (2.13)
(Kielich 1965)

Va = Z Xi%j ﬂ ("pq) "'u (15, 7y) d"pdrq s ’ (4.3)

with Q¢! of the form

a4y O 2m@n42m) (nlm )2
i(r00) = ZO; @) @m)! @n+D)T Em 1)1

X (MP[R] M) (M [m] M{™) £y 20, (4.49)
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From (2.13), (4.1) and (4.2) we obtain for isotropically polarizable molecules

d am
<-9_E (M .e)>0 = Z x5 063065 (0t +- ) f f ol n (15, 7 )drpdry,

i
- 9 7 2 (2)
% M -ely) = E %3267 0005 (0t -+ 0t5) Tog Q (rpg) ;" (1, rq)dr,drq, 4.5)
0 7

so that with respect to Eqs (2.10) and (2.16) Pp is of the form of Eq. (3.2) with P given by

i1 V% 1 o
Py = 5 (it %) f f {1+ STETE o (r,,q)} 18P (1p, 1) dirpdrr,. (4.6)

-For molecules exhibiting the axial symmetry

n ) 2n) Q
MPpIMP = G20 (M @
and Eq. (4.4) assumes the simpler form of
e 2 S 2"’+2m n m —2(n '
Qi} (qu) = Z Z n+1 y (2”3+1)| {Mi( )}2{MJ( )}2 rP42< +"1+1)’ (4'.8)

where M is the scalar multipole moment of order n.

By (4.8), Eq. (4.6) yields up to the quadrupole-quadrupole term

P(U) "_“1“1(“1 +“J)ff{ ’pq 3k2T2 [/‘tlh 1;1 BX ( 29? +

O, + @?@f Tog - ]}n” (1, 7)drydry, (4.9)

where u; = M® is the permanent dipole moment of the axially symmetric molecule of
species i and @ = M® is its quadrupole moment. The temperature dependent terms
in Eq. (4.9) correspond, respectively, to the contributions to P from dipole-dipole, dipole-
quadrupole, and quadrupole-quadrupole interactions.

For molecules possessing the tetrahedral symmetry (e.g. CHy), the first electric moment
they are able to present is octopolar, M ® = 0, and Eq. (4.6) becomes

: 9504 -
Py = OC;OC;(“; + “J)ff{ ’pq 1755272 2 912 pqzo} ”‘u ("'pa"'q)drpd'rq (4.10)

The second term of (4.10) is the contribution to P coming directly from the octopole-
-octopole interaction of two tetrahedral molecules.
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4.2 Dipole molecules with anisotropic polarizability

By the general Eq. (4.1), the electrostatic potential energy of dipolar systems is of the
form

N, Ny
Z Z Z Mepi * (I)T(l) Pgis (4.11)
7 p=1

thus, up to the second order in « and pair correlations, Eq. (4.2) becomes
o , 1 a a
<3)T (M’ e) V31>0 == ZJ i {100y - of - ) — (i - of - ) (- of - ) +
+10(w: - of - w) i} [ [ 1590 P (m,w,) didr, 4.12)
o , 32 i
(Z)l_? (M’ -e) V. 31)0 = 1595 Z xpdud {ldoud (- of - )+
i

o8 ) (o - )+ 1008 ) ) [ [ 58P ) didry (13
where we have introduced the anisotropic polarizability tensor
o = a;—a; U. (4.14)

With: respect to the foregoing ;esult, Eqs (2.10) and (2.16) yield

i 2n a a a
Py = EETR f f {[100:,-,11?(;1,--«,- CH) = (o ) (e of - )+

8u? v
+10(w; - af - ) ayuf] rp3+ 49‘;;;’2[14w?(u,~a,- )+

+ (- af - ) (- of - ("J) + 14w - af - ) o] ;3P4 } 1(11'2)(1'1’9 1) drydr,. (4.15)

In the case of molecules exhibiting the axial symmetry, we have
B of -y = o007, (4.16)
and Eq. (4.15) reduces to v

1 8z 1
P _ 225792”7]"2 z]‘/“/ﬂ{(Sx, #i%j+5%) rpd +

8u;
+ 49/.;:2’;{2 (Toti-seirt + Tog) rpd? } n5 (1) drydr,. 4.17)

The further contributions to P, are of the third order in . In this case we should
consider the additional energy of induction arising from interactions between the permanent
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dipole moment of one molecule and the dipole moment induced in the other molecule.
For a multicomponent system of anisotropically polarizable dipolar molecules we have, to
linear term in o,

N; N; N

Vina = — % Z }: Z Z By OT - ot (I)ng) CWg—ee  (418)

gk p=1 g=1 r=1

We obtain by Eqs (4.2), (4.11) and (4.18) for the contributions to Pp in a8,

(a%z (M- e))0 = % Z iy {oui(en: of) + (o0 o) ot} f f 18P (1, 7g) d1pd¥y, (4.19)

i
a‘ ’ n 1 2 a a o
IO - e)Viad ) = — 55 ) 7 30k - of - ) +10(af: o)
50 £
(e af) (- af - ) — (- of - ) (0 o) + 100 o) +

+30(w - of - w) &} [ [ 73wy vy drpdry, (4.20)

9 ri. 1
(9—E (M’ - €) V‘%>0 = 150 Z s { [ - o - o+ ) +3(0tiz o) [T %
i

¢ [(oay + off - 1a7) + 00| +6[3(pms - ot - et - ) — (oust ) pif] (s - o - W) +
F6(p - of - ) [B(1 - 0+ o+ ) — (o o)f] + [ o - ) +
T 1008] [(g - o 0 - o) 30 ) iy [ [ 17 0, ) drdre (420)
For axially symmetric molecules we have, besides Eqs (3.10) and (4.16),
al s of = 6o, @ : o - o ey = af (1+dog;+40d) i, (4.22)

and Eqs (2.10) and (2.16) yield finally with respect to Eqs (4.19) — (4.21)

g &
Py = ?n % ff{[“i(l +20) +a5(1+2)} 50+

2 .
+ e Lot} 6o+ 5f— )+l (S -5ogf— wof)] That
Iu.z ‘u?
N -+ ﬁﬁﬁ [OC,'(S +25;+1 1%,2) (5 + %]) + 18%,'%]'(2&,' 4 20(j o+ OCj%j) +

+(5+#) (5421 +115d) o] rpgi+ . } nD (1, 1) drpdrry . (4.23)

If, in particular, the dipolar molecules are isotropically polarizable, ® = 0, eq. (4.23)
‘reduces to Eq. (4.9) up to the dipole-dipole term.
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4.3 Quadrupole molecules with anisotropic polarizability

In the case of a multi-component system consisting of non-dipolar components
having quadrupolar molecules, the general Eq. (4.1) becomes for quadrupole-quadrupol
interaction

N, Ny N, N,
Va=— 13 Z Zl ;Mﬁ): @p®. pMP — - Z Z Z SOTD. 0. (4.24)

whereas for the induction energy of quadrupole-induced dipole-quadrupole interaction

we have
N, N; N,

=L T S Y Y 0, 012 - OLDi0,

ik p=1 ¢g=1 r=1

From (2 13), (4.2), (4.24) and (4.25) it follows that the contributions to P are of the form
d am
<5)E M’ -e) Vcl> 35 Z iy {(oi: ©3) [ay: (o - )] +
i .
ot (o~ @) (a2 ) [ [ rBn (1w 1g) iy, (4.26)

(a_af (M- €) Vind>0 = —5% Z x,%; {7(0f 2 0f) (©;: ©) o;+2[30a?—
—(af: of)] [0;: (6 - )] +2[O;: (6; - af)] [30a} — (o : )] +
+72(0;: ©;) (o: o)} f f P (1, 1) drydrg, (4.27)

<i o - 0) Vj)o ffl xix {102 ©)) [0;: (8 - a)] —2((ef - ©): O]

X [(0F - ©;):0;] +7[0;: (8; - af)] (0;: ©)) o} [ [ robn(wywy) dpdry.  (428)
The foregoing contributions to P§” can be simplified by using the following identities:

oL 0; = 306,%,@,, o;: (a, . 9,) = 30!,2}6,'(2—}—%,')@,',

0:0,- 2 61 (@00 - > 2 (4.29)

which hold for qﬁadrupolar molecules possessing the axial symmetry; namely, we have

by (2.10)
@) 2 2. —
Py 175kT a,a,fj {[oc,@ (102¢; -+ T3eF —226F ;)
—21uiuj9-@-(2a;+2acj-—|—oc,~x,~—|—acjzj)+@ 0t (100¢; + T —266]) | rpg +

21” OO (Trt;— 2oty + Tj) 1ol 4. }n,,)(rp,rq)drpdrq - (a30)
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4.4 Molecules with dipole and quadrupole moments

Let us now consider the case of a multicomponent system of molecules exhibiting both
a dipole and quadrupole moment for which the electrostatic potential energy .of dipole-
quadrupole interaction is of the form, resultmg from Eq. (4 1),

--5X Z Z (o OTD:05-0,: T - p}. (@3

i p=1 ¢=

With respect to Eqs (2.10), (4.2) and (4.31), the contribution to P{ from dipole —
quadrupole interaction is given by the expression

i 167 , o ‘.
Py = IREE f {2[(@f - ©,): ©;] [10a;uf— (i - & “ )] +
+72:(0:: 0;) (s o - ) + (s - of - ) (052 ©) o+ 2[10a;uuf —

—(i a0 - ©): 0} [ [ 5 (ry, 1) didry. (4.32)

If, in particular, the molecules are axially symmetric, by Eqs (4.16) and (4. 29), Eq.
(4.32) reduces to '

ii 16ma;0;
(i) i
5’ = W—Jg f {M?@f(7%i+10%j—2%i%i)+
+ @2 2(T;+10s;—2x6)) | | 1D dr,d 4.33
77 (T oi—20i%) } Lo (T, 1) drpdry, (4.33)

It is interesting to observe that the contributions to ng) given by Eqs (4.17), (4.30) and
(4.33) are non-zero only if the anisotropy of dipole polarizability of the molecules is taken
into account.

.

5. Applications of the theory to two-component systems

We now consider a two-component system of N; molecules of species 1 and N, molecules
of species 2, with N;+N, = N. In this case Eq. (3.2) assumes the form

Pp = PP+ 5,PD 4 2PID 1 20, PAD 4 p2PED 5.1)

where x; and w, are the molar fractions of the components 1 and 2, respectively.

We first consider a binary system, the one component of which is monatomic with
atoms possessing the dipole and quadrupole polarizabilities a; and g; and the other quadru-
polar consisting of axially symmetric molecules with dipole and quadrupole polarizabilities
@, and g, and permanent quadrupole moment @,. In this case Eqs (3.6), (3. 11) and (4.30)
yield
4

= Nay, P® == N %5 (5.2)

@ __
Pp’ = 3

8
PEY — Xt f {738+ 5 qrsinf (15, 7)) drydrr,, (5.3)
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4o - ~ 24 -
PH® = 5 ff{“% [“2’#2"‘ 5 qoTpg + EET “2"29571):}1] +

+ad(1 +253) (o758 + 5 qurps } n2(1p,1g) dpdry, _ (5.4)

8
PE® — o f f {(1+2x%)(oe2r;q+ 5qy79) +

25603
21kT

121,03

t TET

[2(10 351, 23 72 (1— ) -13]}n<222>(rp, 7)) drydr,.  (5.5)

If the one component of the binary system is monatomic as before, but if the other is
dipolar with axially symmetric molecules having the dipole polarizability &, and permanent
dipole moment u,, we obtain by Eqs (4.17) and (4.23) in addition to Eqs (5.2) and (5.3)

47 _ 2 _
P(12)= §a2ff{a% (Tpg—[— 5ET ”2;“2’?2) +

+ay(1+2:3) (“1’53 +5 91’52)} n{@(1p, 7,) drpdry, (5.6)

8 24}
PgY — g a3 f f {«z [<1+zu%) it Sy 6+ it

% -
+ 7z k2 78 (25 ++ 1555 +9333 +29x3) r;}z] + 7z ;’g ;,2 [(10—%2) Tra+

8 v
+ 19 kl; ;,2 (14 +2) r;}5] } n{B(rp, v,) drpdr, (5.7

In the case of a mixture of a quadrupolar component with a dipolar component, the P§?
accounting for the interaction between quadrupolar and dipolar moleculés, on the basis

of Eqs (4.23), (4.30) and (4.33), is of the form

Pe» — azloc2 ff{ (e (1 4-2:) + (1 +2”2)] g+

2“]_#% -9 12@1 Il’l/g
+ ag CratSd—dng) ot o | 106 | @t grp )+

+2(7— 22¢,) ( oty + 57 T)] “} nD(rp, 1) drpdr,. (5.8)

The numerical evaluations establishing the role of the respective multipole contributions
to PY) will be given in the third part of this paper.
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