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Synopsis

The equation of state in the approximation of the second virial coefficient B is
discussed theoretically for gases consisting of unlike multipolar molecules. A molecule
of species 4 is assumed to possess a permanent 27-pole moment Mi("), as well as a
2n-pole moment P, induced in it by the electric ficld F;™ of order # of a neighbouring
molecule of species 7 having the permanent 2m-pole electric moment M,-(m). Tensor
formalism is used for deriving general expressions for the potential energy of electro-
static and inductional interaction of two multipolar molecules of species ¢ and j. These
energies then serve for computing two contributions to B: the one, of inductional type,
is obtained in the first approximation and contains, in addition to terms with dipolar
polarizability, terms accounting for the quadrupolar polarizability induced in the
molecule by the molecular electric field gradient; the other, which is purely electro-
static, is obtained in the second approximation of the theory. Moreover, cross contri-
butions to B between the electrostatic and inductional energies as well as contributions
from dipolar anisotropy of dispersional-type interactions are computed. In computing
the mean values of the respective powers of #;; (the distance between the two molecules),
a general Lennard-Jones (s—f)-type potential is applied. The theoretically derived
non-central contributions to B are valid in general for molecules of arbitrary symmetry
and arbitrary electrical structure; the expressions are applied to cases of axially
symmetric, tetrahedral and octahedral molecules. For methane, the theoretical
formulas allowed to determine numerically the octopole moment from experimental
data on B to be Qgg, = 5 X 10734 es.u. cm3.

§ 1. Introduction. Since the time of Van der Waals, Kamerlingh-
Onnes and Keesom it has been known that deviations in the behaviour
of real gases from that of a perfect gas are due essentially to molecular
interactions. These interactions can, on the one hand, be computed theo-
retically by statistical mechanics applied to an appropriate molecular model
and, on the other hand, determined experimentally from the equation of
state of a gas, expressed in virial form:

B C D

where p, V and T are parameters of state and R is the gas constant.

*) Present address: Department of Physics, A. Mickiewicz University, Poznain, Poland.
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In the region of intermediate pressures the second virial coefficient B
determines the most essential divergence from the equation of state of a
perfect gas; the third C, fourth virial coefficient D and so forth are of little
importance, their role increasing at high pressures. In a sufficiently rarefied
gas, we are justified in expecting primarily pairwise molecular interactions
the potential energy of which is accounted for by the second virial coefficient.
Thus, the experimental value of B, measuring the deviation of the real gas
under consideration from the perfect gas, provides information on the
character and value of the intermolecular forces. The method, however,
is of relatively simple application only if the gas consists of atoms or molecules
that can be treated as spheres interacting centrally. The problem becomes
highly involved if the gas consists of molecules having a complex electrical
structure no longer admitting of the spherical approximation, since now their
interaction potential energy depends not only on their distances but,
moreover, largely on their mutual orientations. Nevertheless, a numerical
solution can always be reached if, from the total potential energy of inter-
action of two molecules, we can separate the part dependent on the angular
variables and consider it as a perturbation to the central-type energy. Now,
since angular dependence of the potential energy arises primarily from
electric multipoles in the molecule, investigation of B allows to determine
not only the parameters of the central forces but, moreover, yields infor-
mation concerning the electric (quadrupole, octopole, etc.) moments of the
molecules.

In the case of a mixture of multipolar gases, the second virial coefficient
of eq. (1) can be quite generally represented in the form

B, = 27; x,;xj{B;?]?ntl‘ + B%oncentr 2
%

with x; denoting the molar fraction of the ¢-th component of the mixture and

Bg;antr — —ZnNOf{e—u”(r”)/kT - l} r;q drpq (3)

béing the contribution to By, from the interaction energy of the central type
44(r pg) Detween molecules p and g of species + and § having mutual distance

rpq.
The other contribution to By, is related with the noncentral forces energy
V4j(7pg, wp, wg) considered as a perturbation to u4(7pe) and is given as follows:

i 25 Y i
K 2022 ,=1 n! ET ii\"pg, Wp, Vg

% e—uu(fn)/kT dqu dwp dWQ (4)

with wp and w, denoting angular variables determining the orientation of
the p-th and g-th molecule, respectively, with 2 = fdw, = [ dw,.
Lennard-Jonesl) performed the first full, numerical calculation of B
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as given by eq. (3), for a central forces potential of general form

i if
Uig(rpg) = — —— + —s (5)
rpq 7174

wherein the first term accounts for the energy of attraction and the second
for that of repulsion between the molecules. The Lennard-Jones model has
since been applied in various modifications (cf. refs. 2-5).

The earliest calculations of the second virial coefficient for dipolar and
quadrupolar molecules taking into account a noncentral forces potential
arée due to Keesom®), Debye?) and Falkenhagen8) and have been
modified for higher accuracy by Stockmayer?), Rowlinson10), Poplell)
and others (see refs. 2 and 12-19).

Debye") already pointed to the possibility of gaining information on the
quadrupole moments of molecules from investigation of the equation of
state of gases. To this aim, it is most convenient to proceed from data on the
second virial coefficient (see refs. 11, 16, 20). Evaluations of molecular
quadrupole moments are particularly satisfactory if we assume numerical
values of central-forces parameters of the 6-12 Lennard-Jones potential
from viscosity measurements in gases1?). Recently, Orcutt?2l) generalized
this method to the entire temperature range accessible in the experimental
investigation of B and obtained fully realistic values of the quadrupole
moments of various molecules. In a similar way, we obtained results for the
octopole moment of tetrahedral molecules22), and the possibility presents
itself of determining the hexadecapole moment of octahedral molecules?3).
This, although an indirect method of determining multipole moments, is
of advantage owing to its conveniency in use and leads quickly to final
results of sufficient accuracy, particularly if we are unable to perform the
direct computations by wave functions.

Our present considerations are restricted to contributions to the second
virial coefficient due to noncentral interactions of, in general, a tensorial
nature. Thus, in computing (4), we assume that the potential energy v
of tensorial interaction consists of a term derived from electrostatic inter-
action between the permanent 27-pole moment of one molecule and the
permanent 2m-pole moment of another, and of a term derived from in-
ductional interaction between the permanent 2#-pole moment of a molecule
and the 2m-pole moment induced in another. Account is also taken of the
anisotropy of dipolar polarizability of the molecules, as well as of the ani-
sotropy of the London dispersional forces. The results for B obtained by
tensor formalism hold in general for molecules of various kind and of
arbitrary symmetry, and are applied to cases of molecules presenting the
axial, tetrahedral or octahedral symmetry.

Since our considerations deal with weakly dipolar molecules or molecules
presenting a small dipolar moment but at the same time having arbitrary
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higher electric moments, as well as with nondipolar molecules having
higher (quadrupole, octopole, haxadecapole, etc.) electric moments, the
computations of noncentral contributions to B as given by eq. (4) are
restricted to include the third approximation of classical perturbation
calculus. Higher approximations containing moments of higher order are
insignificant corrections to B and can be neglected. Clearly, this restriction
cannot be made in the case of strongly dipolar molecules (but not possessing
higher electric moments), for which exact calculations have been carried
out by various authors (see, refs. 2, 6, 10, 12, 14, 18).

§ 2. The contribution to By; from electrostatic interaction. We first calculate
the electrostatic potential energy of interaction between two unlike molecules
of species 7 and . The molecules p and g of species 7 and § can be assumed to
have arbitrary charge distributions with 2%-pole and 2™-pole -electric
moments, respectively. In the case of nonoverlapping charge distributions
p and g separated by a distance rp, and having orientations specified by
w, and @, the electrostatic potential energy is given by the following
expansion 24) 25)

20
o M) F. ©

o0
”3}(”1)(1: wp, Og) = — 20 —7,‘
e !

n.
(2
Here, M%) is the n-th rank tensor of the electric multipole moment of the
p-th molecule of species ¢ defined as25)
M) = X €073, 8™ (rp), (7)

where ¢{¥) is the »-th electric charge of molecule p of species ¢ and rp is its
radius vector. The operator $™ of rank #» is given by

S)(r) = (:;)n yntl pn (_;_) —

= {@n — W rirg ...ty — (2n — 311923 Urors ... 1y +

+ (2% — 5)” rd 2 U12U341'5 ves Iy — (2% — 7)” 76 2 U12U34U56 ry ... 1, +
+ (——1)"(2% — 2k — 1)”72"’ Z U12 Uz]c___l, okr2k+1 --- 'n + }, (8)

where Ujs is a unit tensor and ¥, Uqars ... ry, etc. are sums of terms obtained
from the one written by interchanging the suffixes 1, 2, ... n. V is the
differential operator and the symbol [#] in eq. (6) denotes n-fold contraction
of the product of M(® and F(®, ‘

By (7) and (8), the consecutive (monopole, dipole, quadrupole, octopole



448 ; S. KIELICH

and hexadecapole) electric moments of the molecule are expressed as
follows (for simplicity we have dropped 9, 7)

e =MO =3¢,
u =M =73 ern,,
O = M® =13 ¢3rure — r2Uss),
R =M =1 ? ex{Styityatyy — 7, (Urarys + Usarnn + Usirye)},
D =MD =1} ? €s{351y11raly3rya — 577 (Ulzfv3fv4 + Ussryary +
+ Usarnitye + Uraryerys + Uistyerys + Usariarys) +
+ 7;(U12Uss + U1aUsq + U14Uss)} ©)

The electric field of order »# of the 2m-pole moments of molecule ¢ of
species § acting on molecule p of species ¢ is of the form 25)

© (—1)ym2m ]

=2 TR M 1o
wherein
1
wrg = —prm (), p2a (1
¥ pq

is the tensor of rank » 4+ m describing the (27-pole) — (2™-pole) inter-
actions between the molecules p and ¢, and J is directed from molecule ¢
to p. In terms of the operators §® defined by (8), the multipole interaction
tensor of (11) is of the form

TP = (—1)mmtl (n + m) Ly M7 D Stadm) (1), (12)

where §™M(rp,) = (—1)28® (ry,) is given by eq. (8) if r is replaced by rpq,.
By (10), the electrostatic potential energy (6) can be expressed in the
following general form :

" ) § E (—1)ym+1 2ntm gy lop |
Vii\"pg, Wp, Wq} =
A n=0m=0 (2’}1) ! (Zm) !

MU [n] ) TiWm] MS». (13)

In the first approximation, electrostatic interactions of permanent
multipoles do not contribute to By, as the first power of v§ vanishes on
isotropic averageing i.e. on integration over all possible orientations of the
molecules with equal probability. The first nonzero contribution to By
comes in the second approximation from the square of v3. By squaring v
given by (13) and then carrying out integration over all orientation coordi-
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nates we obtain

—!%;J‘ {”3}("174» wp, wg)}? dwp dwg =
o o QAmm(nl )2
=2 Z i am @t 1) @2m 1+ 1 |
X (M ] M) (™ TS [n + m] o To) (MY [m] MgY). (14)

Considering that24)

we have by (14) from eq. (4) for the contribution to B from electrostatic

interactions of multipolar molecules
B — — "N E 0201 2ntm(2n + 2m)! (n! m!)2
! 4R2T2 2.2 2n)! 2m)! 2n + 1) (2m + 1)!

X (M{[n] M) (M{™[m) M{™) gm0y, (16)

-with the radial average value

—n —n (7 pg)
' > = f Vpg €XP {— T} drpg. (17)

From the general expression of eq. (16) we obtain up to the term with
haxadecapole-hexadecapole interaction of two neutral molecules

N
6k2T2

S (MP : MP) (M- M) + ABMEO- MO M : MP) +

+ 7(M® : M®YM® : MP) 4 3(M® : MP)(M®- M)z 1% +

+ ATS(M®-MP)(M® :: M®) + 21(M® : MP)(M® : MP®) +

T 21(M® : M®)(MP : M®) + 5(M® :: MP)(M - M{")Jrz 2 +
BL[5(M® : MP)(M® :: M) + 9(MP : MO)(MP : M) +

+ 5(M‘4> : M) (M® : M®)] 5™ +

+ LMD : ME)(M® :: M®) + (M : M(4))(M‘3> M®)] <% +
1 SIZ(M® : MY (M® :: MP®) v 55} (18)

735

By = — (M- MDY (M- MP)r® + (M- MO) (M : M) +

Further simplification of the general result of eq. (16) or (18) can be
achieved by assuming a particular type of symmetry of the molecules. This
will now be effected for the three cases most commonly occurring.
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We shall first discuss the case of molecules exhibiting symmetry with
respect to the z axis, for which we have

(2n)!

(n) (n) _

gy, (19)

and eq. (16) assumes the simpler form of

g o oo (2n + 2m)!
47 4peTe Eo,,,:o @2n + D! (2m + 1!

(M,Sn)) 2 (M§m))2 <,,?; 2(n+m+ 1)>,
(20)

where M{™ is the scalar multipole moment of order # for the axially-
symmetric molecule of species <.

With the accuracy up to quadrupole-quadrupole interaction, eq. (20)
yields the well-known result of Keesom§6)

Bj = — ggﬁ— {uiuir5® + 3 (ui0] 4 O%u}) <r®> + 2L 670}z '™}, (21)
generalized to the case of unlike axially-symmetric molecules possessing a
dipole as well as a quadrupole moment interacting with arbitrary central
forces u44(rpqg) contained in the Boltzman factor in eq. (17).

We now consider the case of molecules with octopole and hexadecapole
moment, but not possessing permanent moments of lower order, i.e. pre-
senting neither a dipole nor a quadrupole moment. This is the case of e.g.
molecules having the tetrahedral symmetry, like methane, carbon tetra-
chloride, and so forth, when the octopole and hexadecapole moments are
scalar quantities defined by (9) as

Qi =5 T eniyrzy, Dy = 5 2 ew(322x2 — &), (22)
and eq. (18) yields
528N B
%= — Toerare ORI + 652107 +

+ D) <rg'® + 13000 DYDY (23)

Here, the first term represents the contribution to By from octopole-
octopole interaction, the second — from octopole-hexadecapole interaction
and the third term describes the hexadecapole-hexadecapole interaction
of the molecules.

In the case of molecules having the octahedral symmetry (e.g. the molecule
SFg) the first nonzero moment is the hexadecapole moment and we obtain
from (18)

91520N

1 __
B =~ “omre

DIDKr 8. (24)
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We see that in the case of octahedral molecules the first possible contri-
bution to By is that resulting from hexadecapole-hexadecapole interaction.

§ 3. The contribution to By from inductional interaction. To within the
induced-dipole approximation, the induction potential energy of two unlike
molecules is given by

d’”w U7 pg, p, 0g) = —l{Fm Qgj- F(l) + F(l) “Opi- Fm (25)

or, by (10) for » = 1, in the following explicite form,

‘ o oo (1ymHI2mtmy Iy
WM (rpg, wp, wg) = — 12 T X

X MUY TR - atgy O TG [om] MYP +
+ M®)® T ey OT[m] MEY,  (26)

where @, is the electric dipole polarizability tensor of molecule p of species 7.
For the potential of eq. (26), eq. (4) becomes in the first approximation
N o 282n 4+ 2)! (n!)2

&l 2 2! (2n L 1)
+ (M{V[n] M) ag} <™+, (27)

Byt = — (M) M) +

where o4 is the scalar dipole polarizability of a molecule of species s.

We now generalize eq. (25) to the case of higher-order induced moments
as already considered by Frenkel26). The electric moment of order »
induced in molecule p of species ¢ by the electric field of the permanent
2m-pole moments of molecule g of species 1 will be given as

P =X

m=1 M) H

(n) A(m)[m] F(m) (28)

where (AU is the tensor of rank # + m characterizing the polarization of
the permanent 2n-pole moment of molecule p of species 7 due to the
molecular electric field of order m defined by eq. (10).

In particular, we obtain from (28) for a first-order induced moment
(v = 1), or induced dipole moment,

p(l) (1)A(1) F(l) + 1 (1)A(2) F(2) + 1 (1)A(3) F(3) + . (29)

where WAL, WAP, and (1)A(3) are tensors of the dipole electric polarization
induced in molecule p of species ¢ by the first-order molecular electric field
F (or, in brief, electric field), by the second-order field F( (or field gradient)
and by the third-order field F$’ (or gradient of field gradlent) respectively.

Similarly, for » =2 we obtaln from (28) the second-order induced
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moment, or induced quadrupole moment
P(2) (2)A(1) (1>_|_ 1 (2)A(2) F(Z)—l— 1 (2)A(3) F(3)+ (30)

where @A), MAD), .. are the tensors of the quadrupole electric polarlzation
of molecule p of species ¢ due, respectively, to the electric field, field gradient,
etc.

In terms of the induced moments P{”, the total induction potential
energy is given as

. o 21’y
e op 00 = — 1 3 i R P + B PR, @)

or, by eq. (28), in terms of multipole polarizability tensors (m A@m),

ind © e 2nimiy!| '
N e ne .
V3 (7pg, ®p, Wg) = —%2 > {F(")[ﬂ](" VAU [(m'] Fg?)‘f‘

1m=1 (2n')! 2m')!
+ Fi w1 MAZ (') FZY. (32)
From egs. (10) and (32) it follows that the total potential energy of in-
duction is of the form
( ) § g o0 § (_1)n'+m2n+m+n'+m’n!m[n'[ m'
07 g, 0p, © — ; ; X
7R T T %nglm/:lnzjmzo (2n)! (2m)! (2n')! (2m")!
X AMETn] DT 1 AG I 1T m) MY +
+ M) DT[] A ] T MG, (33)
By (33), we obtain from (4) in the first approximation up to the term
with the field gradient quadrupole polarizability

Biljld =4 Bmd + ¢ Bmd (34)

1}

where ¢Bj;® is the contribution to By arising from the dipole polarizability
approximation of the induction energy and is given by (27), whereas (B¢
is that from the quadrupole polarizability approximation and is given by
ma _ _ N = 272n 4 4)! (n!)2

e 48T =, (2n)! (2n + 1)!
+ (M{[n] M) g3} <rg?™+3,  (35)

{go( M (] M{™) +

with g = Uz : @A), : Uss/15 denoting the scalar quadrupole polarizability.
For axially symmetrica.l molecules we have (19) and the expressions (27)
and (35) assume the simpler form of

N oo

G ==z 2 (0 D(M)2 + (MP)2 egir> ™+, (36)
N -5}

B = — 17 B (1 D+ 2) 2+ g M2 + (M2 ghrg e+,

(37)
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or up to the term with quadrupole moment

N

aBjt = — 5T {(eas] + wdog)<r55® + 3(040F + Oo))<r, 5}, (38)
N

Bt = — -7 qip; + wign)<rg® + 14(¢:0F + Oig)<rii "} (39)

Similarly, egs. (27) and (35) yield, for molecules possessing the tetrahedral
symmetry,

12N
aBRt = — Y (a2 + Q2o))<rii > + 2 (i ®DF + Dlay)r; 1D}, (40)
Bind 12N 2 2 ~12 110 2 2 —14
=y T {3( i‘Q + Q5 qf) i >+ (qi@ + ¢1qj >} (41)

For 2 = 0, egs. (40) and (41) conform to the case of octahedral molecules
with hexadecapole moment.

§ 4. Further contributions to By. A further contribution to By within the
framework of the second approximation results from the cross term vgvr?.
In the case when the dipole polarizability tensor e is isotropic the term vg X
X v vanishes by averaging over all orientations, but it is nonzero if the
tensor @ is anisotropic and if, moreover, the molecule possesses a dipole or
quadrupole moment. Indeed, by (13) and (26), on integration over the
angular coordinates and on neglecting the moments higher than quadrupole,

we have from (4)

2N
By*® = o U@ 1 @) (505 py) + (pa- Oy i) (@ = Op)Kry™> +
8N
T Sepega (@ @0[0; 1 (05-0))] +
+ [0 : (04-04))(0y : O))} 7" (42)

In the case of molecules exhibiting the axial symmetry, we have
@;: 0; = 300, 0;: (04 @) = 2607, ui- 0y = 136,
and eq. (42) reduces to

6N
B = 0:0{(euarcapsi + piogng) <rz'h> +

v 5k2T2
+ 3osi@7F + Oloyuy) ) <) (43)
wherein x; = (¢ — «{?))/3x; is the anisotropy of dipole polarizability of the

ZZ
axially symmetric molecule of species 4. It is immediately obvious that in
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the case of isotropic dipole polarizability, i.e. when x; = 0, the contri-
bution (43) vanishes. :

Similarly, we can calculate higher approximations to By taking into
account the terms (v)3, (v§)4, etc. To avoid complicating the final results,
we restrict our calculations to the contribution from electrostatic interactions
in the third approximation, and obtain by (4) and (13) for molecules possess-
ing a dipole as well as a quadrupole moment

2N
5= 5E3T3 {(e- @5~ ps) (5~ @5 pug)<rg'™> +

[(.us O 1)(0;-0; : 0g) + (0;-0; : O:)(u;- ;- Mf)1<7nl3> +
32(0;-0;: 0,)(0;-0;: 0)) &y}, (44)

In the case of axially symmetrical molecules eq. (44) assumes the simpler
form

2N
= “Tiage OO i<yt + 3i6] + Oiuf)<ryg'y +
+ 186020%r; %) (45)

Let us now, moreover, take into consideration in the above calculations
the additional potential energy resulting from the anisotropic dispersional
forces discussed for axially-symmetric molecules by De Boer and Heller?7),
and by London?28) and De Boer?29). For molecules of arbitrary symmetry
we have in the dipole-dipole approximation17?)

panis-disp _ l( hvihvy )
4 N\ Iy + hg
X {(@pi- DT (g P TL) — auoy(DTL) : OTL),  (46)
where hv; and Av; are characteristic energies of the two interacting molecules
of species 7 and 5.
Obviously, in the first approximation, the anisotropic dispersional

interactions of molecules do not contribute to Bj;; however, in the second
approximation, we have by (4) and (46)

N vy \2
Bt = — ( ) 19(e; : : —
7 T600%2T% \ g 1 Iy ) 1000 2 @@y = @)

— 27a}(ey : @) —27(ai ;@) of — lalKry',  (47)

or, for axially-symmetric molecules,

9N hvihv; .>2
Bq,njs-disp —_ < 5 5 19 2,2 12 , 48
g 400%2T2 \ Ty I Iy (O + Sl + 19} rig ™S, (49)

since we have in this special case &; : @; = 3a2(1 + 2«I).
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A further contribution to By should come from the cross term vgvgris-dkep;

we obtain for quadrupole molecules from (4) by (13) and (46)

ol-disp _ 3N < hvihvy
& 25k2T2 \ hy; + hwy

> (ai : @i)(aj : @j)(fi;ll). (49)

In the case of axially-symmetric molecules, the above expression trans-
forms to

pol-disp _ 2IN < hvihy;
i

— _ wei@segicsOyr 1. 50
25k2T? }wi+le>°°”“ sy (0)

From egs. (47) and (49), or (48) and (50), we see that when the anisotropic
dispersional force is taken into consideration, there are two opposing con-
tributions to By, namely, a positive contribution (49) or (50) from the cross
term between the anisotropic dispersional forces and the quadrupole-
quadrupole interaction, and a negative contribution from the square of the

pure anisotropic dispersional energy.
- In the same way, one can calculate other contributions to By due to the
second and higher approximations; the latter however, are of the second
order in the dipole polarizability or higher-order polarizabilities, and in
general play -a smaller role as compared with the contributions calculated
above.

§ 5. Applications to special cases and discussion. In order to compute
effectively the average value <7;™> defined by (17), we have to know the
law according to which the forces of attraction and repulsion between the
molecules vary with the distance 7p4. Assuming, in general, that the energy
of central interaction of the molecules is given by

i \° Gif tl
S L ;
i('pa) =F3eus roa voa! | (51)
we obtain from (17) by the Lennard-Jones method
duod ™ 6b‘sz_t(yij)
et = T by = 200 (52
v T syso

wherein & and oy are the central force parameters having the dimensions
of an energy and length, respectively, and

tm+n—3)) (53)

* ]
Hf,_t(yzy) — j}7(:743+6—2n)/s Z | y?fm(s—t)/sp (
m=0 M! N

with vy = 2(ey/kT)t and by = 2aNo},.
For s =12 and ¢=6, ie. for a 12-6 Lennard-Jones potential, the
functions (53) are reduced to the functions H1%%(y) introduced by Poplell)
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and tabulated by Buckingham and Poplel2), whereas for s = 18 and
t = 6 we have functions which have been discussed and tabulated by
Saxena and Joshil8) as well as the functions for s = 28 and ¢ = 7.

Recurring to eq. (52), we canrepresent the contributions to By; from various
noncentral interactions, as computed in sections 2, 3 and 4, in a form
suitable for direct numerical estimations, provided the parameters g; and
o4, and other molecular parameters are known.

In the case of a one-component gas consisting of axially-symmetric
molecules with a small dipole moment g and arbitrary quadrupole moment
O, the expressions (21), (38), (39), (43), (45), (48), (50) and (52), transform
to the following formulas:

’Bel(s —f)=— % {< ;23 >2 H% ‘) + 3< £g3 ) (%) H0) +
N EY e e
<mz0) + 1 (o) men ]| (54

pots - 0 = — 2 () [(42) e + 4() mo ] +

<05>[5< )H“ y) + 14<@2>H‘io‘(y):|}, (55)

o 27b [ v \2 4
pemisdisp (s 4 — Z‘E(J) <—°‘?> x2(0.05 -+ 0.095¢2) Hi34(y), (56)
& 42

9k [ o\ [ O
B = = 105 \oa /e )

X{[(:;i)m(’l”)(ga)]ﬂ o +4{g)m) o

On putting in the above expressions u = 0, we obtain formulas for a
quadrupole gas discussed numerically in a preceding paperl?) (see also
ref. 21).

For a gas of tetrahedral molecules with an octopole and hexadecapole
moment, the expressions (23), (40) and (41) become by (52)

19856 02 \2 Q2 @2
Bs — 1) = — 7= {9<*‘) Hiz') + ‘3°<?)<809>H15"” +

+ 13000 (ﬂ)g Hs—t(y)} (58)
21\ gg® 18 ’
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moas — ) = — 2 HCON (L) gt + (2 ) szt | +

Ssy2 l o3 go”? eo¥

+ 15 (%) [(%) H'y) + 342 <%§> Hﬁz‘(y)]}. (59)

In the case when the terms with hexadecapole moment can be neglected
in the above result, we have in a good approximation

. 36b [ « Q2
ind — Y R I s—1
B =0 =~ Ssy?2 < o3 ) < e0? > Hi'0), ©0)
1782b ([ £22.\2
Be(s — ) = — (—) s ). 61
(S ) 1758 80'7 H14 (y) ( )

If the parameters ¢ and ¢ are known, we can determine from (60) and (61)
the value of the octopole moment of the tetrahedral molecule of the gas
investigated. For example, using the 12-6 potential parameters of methane:
¢/k = 137°K and ¢ = 3.882 A from viscosity data?2), we obtain by (60) and
(61) the values of B assembled in table I, where it is seen that good agreement
between the calculated (B! = Bi®¢ L B¢) and experimental values of
Thomaes e.4.39) result if the octopole moment of the CHy molecule is 2 =
=5 X 10734 e.s.u. cm3. It is also seen that the contributions to B from
the existence of non-central interactions of the methane molecules of the
octopole-induced dipole and octopole-octopole types (the figures in the third
and fourth columns of table I) average 15 per cent of the contribution from
the central forces alone (column 2 of table I).

We also note that the value of the octopole moment of the CHy molecule
determined from the second dielectric virial coefficient (Bp) data obtained
by Johnston e.a.3l) amounts to2?) Q.5 = 6 X 1073¢esu. cms.
Direct calculation by Paar (as cited from ref. 31), who used a one-centre
wave function with Slater orbitals, gave the value Q4g, = 6.5 X 1034 es.u.
cm3 in good agreement with our result from the data for B and Bp. As the
complete, exact calculation of molecular octopole or higher moments from
known wave functions is beset with great difficulties, the indirect, simple
ways of determining 2 in tetrahedral molecules as discussed here gain
considerable importance and in many cases can yield fully reliable results,
especially if satisfactory agreement is achieved for the entire range of temper-
atures accessible in the experimental investigation of the second virial
coefficients (other methods are discussed in refs. 20, 22 and 32).

It is also worth mentioning that supplementary and at the same time
verifying information on the molecular quadrupoles or octopoles can be -
obtained from investigations of the second virial coefficients of appropriately
chosen gas mixtures.

In the case of a two-component gas wherein the one component consists
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TABLE I
Calculated and experimental values of the second virial coefficient of methane (in cm?/mole),
for @ = 2.6 X 10-24cm3 and 2 = 5 x 10-34 e.s.u.cm?

T°K Beentr(12_6) | Bind(12-6) | Bel(12-6) Besle(12-6) | Bexper 30
142.6 —174.8 —3.0 —24.3 —202.1 —205.6
176.7 —119.2 —2.1 —14.7 —136.0 —135.0
239.8 — 63.9 —1.5 — 7.7 — 73.1 — 73.0
295.0 — 379 —1.1 — 5.1 — 44,1 — 44.5

of molecules with the small dipole moment u; and the other consists of
molecules with the quadrupole moment @;, we obtain by results derived in
sections 2, 3 and 4 for the interaction between the dipole molecule 1 and
‘quadrupole molecule 2

Blfgncentr(s _ t) —

27b12 ( hvihve )2( - >2< >
- 5ic? + 5k + 19x2k2) HSg (y12)—
32005 \ safs & exaima ) Vo8 ) \ o5, ) f + 5i] +19xlif) Hiz'(v12)

3b12 {< A )[( ) ¢ < ) ’ :I
- Hs 5 Hs
4Sy%2 812622 0'12 (ylz) + 012 ylz _l_
Y[ ) o (2 s
I\— HE 28 s—1
3 < 6126% 0_12 (vi2) + 3 Uig HS, (ylz) +

2 2 2
Y12 ( M1 )( 0; )Hs—t
+ 8 8120’?2 8120‘{’2 8 (ym) i

On putting herein u; = 0 and «; = 0, we obtain immediately the result
for interaction between an atom possessing the dipole and quadrupole
polarizabilities «; and ¢; and a quadrupolar molecule, namely

(62)

Blfgncentr(s _ t) —_

27b19 ( hvihws >2( a1 )2( s )
— 2ps-t
640s \ erghvy + e1zhwz ) \ o5,/ \ o3, 1z (V12) —

— HY t -+ 28 . (63
833’%2 ‘712 W12 ® y12) 812“?2 (©3)

Analogously, for @3 = 0 and «2 = 0, eq. (62) yields a formula describing
the interaction of an atom with a dipolar molecule.

The contribution to Bjp arising from interaction between a deolar
molecule of species 1 with moment u; and a tetrahedral molecule of species
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2 with octopole moment s is of the form

3b 2 23
Bli\gncentr(s _ t) _ 12 < #1 )( 27 >H‘§§t(y12). (64)

=
10s €12079 £120719

For the interaction between a quadrupolar molecule 1 and a tetrahedral
molecule 2 we have .

27b 62 Q
B?gncentr(s _ t) [ 12 ( 1 )( 2 )Hﬁt(ym)- (65)

5 7
20s £€120719 €12059

Similarly, we obtain from (18) for the contributions to Bjz from inter-
action of an octahedral molecule 2 possessing the hexadecapole moment
@, with, respectively, a dipolar molecule

. 15512 ul &2 _
B —f) = — 14s ( 812;3 812029 Hiz'012) (66)
12 12
with a quadrupolar molecule
99b12 ( o? )( o2 )
Bnoncentr —_ ) = — Hs—t , 67
12 (s —1) 145 \ s120%, o120%; 14 (¥12) (67)

and with a tetrahedral molecule possessing the octopole moment £,

2574byy [ 22 o\
35s (s12017 ) ( 29 ) a0 (68)
12

€12059

Blllgncentr(s _ t) —_

In concluding it can be said that, in the situation when the method of
direct calculation of the higher-multipole (quadrupole, octopole and hexa-
decapole) moments of molecules with more that two atoms from known
wave functions generally presents considerable difficuities, the indirect
method of determining molecular multipoles discussed in the present paper
is of great convenience in its applications and leads in a simple way to
results the accuracy of which is in many cases reliable and satisfactory.
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