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The possibility is considered of investigating the light scattered from a weak light beam
of frequency w, in the presence of the strong electric field of another light beam e.g. from
a laser, of frequency w,. It is shown quantum-mechanically to the third approximation that
quite generally, under the effect of the intense light beam, there appear in addition to the
component with normal Raman frequencies w; 4-wy; two new components, the first of these
of frequencies w; 4+, 4 wpy and ®, F w, - wy; appearing only for molecules without a cen-
tre of inversion and the other, of frequencies w,; -2, +wy; and o, F 2wy gy — in all
other cases, including optically isotropic molecules. The discussion of these non-linear contri-
butions to the light scattering tensor is restricted to the purely classical case and is carried
out strictly for gases consisting of molecules possessing a centre of inversion (point groups
Dypy Cops Dops Doops Ty, and Op) or presenting none (point groups Dy, Dyg, Doy, Coyy Cuor Coo
Cyoo and T). Numerical evaluations for CS, and CHCl, point to the possibility of observing
changes in the degree of depolarization and Rayleigh ratio if produced by a light beam with
an electric field of the order of at least 108 e.s.u.

1. Introduction

The lasers now in existence, being sources of monochromatic and coherent light beams
of very great intensity, provide the conditions for work on non-linear optical effects. Recently,
the subject has been dealt with theoretically by various authors, of whom we shall quote
Armstrong et al. (1962), and Franken and Ward (1963); the latter paper brings i.a. a review
of the results relating to non-linear optical effects and the generation of optical harmonics,
up to August 1962. Eckhardt et al. (1962) and Stoicheff (1963)1, using as radiation source
an intense ruby laser, recently observed stimulated Raman scattering from a number of
organic liquids. Quite recently, a phenomenological theory of this new effect has been
proposed by Hellwarth (1963). Also, Loudon (1963) proposed a theory predicting the possi-

* Address: Zaklad Dielektrykéw P.A.N., Poznan, ul. Grunwaldzka 6, Polska
! The author wishes to express his indebtedness to Professor B. P. Stoicheff for making available his
results on stimulated Raman scattering previous to their publication.
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bility, with the lasers now available, of observing stimulated Raman scattering from lattice.
vibrations in solids.?

Investigation, experimental and theoretical, of various non-linear optical effects allows
i.a. to gain better insight into the behaviour of atoms and molecules in electric fields of an
intensity unattainable several years ago, and now conveyed by laser beams. This explains
the increasingly great interest on the part of physicists in the non-linear interactions between
matter and light from lasers.

Non-inear interaction between atoms or molecules and an oscillating electric field
is apparent specifically in the effect of light scattering in the presence of the very intense
electric field of another light beam incident on the scattering medium. The possibility of
laser light influencing the Rayleigh scattering of light in gases has already been discussed
in some of its aspects for the case of axially-symmetric molecules and certain pre-assumed,
simple conditions of observation (Kielich 1961, 1963a, c, 19644, b, Piekara and Kielich 1963).

The present paper brings the quantum-mechanical basis of the theory of non-linear
light scattering, covering the formalism of both coherent (diagonal matrix elements of the
scattering tensor) and non-coherent light scattering (non-diagonal elements of the tensor).
The theory is sufficiently general for applicability to molecular scattering systems of arbitrary
symmetry at arbitrary conditions of observation; its detailed discussion is carried out on
a purely classical level. The transition to the classical case was primarily suggested by a tend-
ency to avoid over-complication and to obtain results in a form adapted to immediate
evaluation revealing the order of the non-linear variation undergone e.g. by the degree of
depolarization of the scattered light or by Rayleigh’s ratio under the influence of the intense
light beam. With the aim of rendering apparent the innermost, essential mechanism of the
effect under consideration, and in order to derive our formulas in easily legible form, we
shall discuss the case of a rarefied gas, where intermolecular interactions can be neglected.

2. Quantum-mechanical fundamentals of the theory

Let us assume a monochromatic light beam of frequency w, and electric vector 2E;
= Ej ¢** + E{ ¢™** with Ef and Ei denoting (generally complex) amplitudes, incident
on a quantum system (an atom or molecule or small assemblages of such). The interaction
between the quantum system and the magnetic field of the light wave can be neglected in
comparison with its much greater interaction with the electric field of the wave. Assuming
the wavelength of the latter to be large with respect to the linear dimensions of the scattering
system, we can write the Hamiltonian of the system in the following dipole approximation

1 . )
= Hy+H, = Hy— ) (M - Ef e°*+M - E{ ¢™), 0

wherein H relates to the nbn-perturbed system and H, is the Hamiltonian of the perturba-
tion due to the light wave, M denoting the operator of the electric dipole moment of the quan-

tum system.

2 The author expresses his thanks to Dr R. Loudon for sending him two typed copies of his papers on
stimulated Raman scattering previous to their publication.
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As long as the intensity of the electric field E, is small, quantum-mechanical perturba-
tion calculus can be restricted to the first approximation, leading to the well-known result
of Kramers and Heisenberg (1925) for the dipole moment induced in the system by the
field E,. Albeit, we are concerned with the case when a second light wave is incident on the
system under consideration, with electric vector 2FE, = Ef ¢+ Ey ™™ oscillating
at the frequency w,. The Hamiltonian (1) has now to contain the supplementary perturbation

H, = — % (M- Ef éo¢ + M- Ey =), @

Since we assume E, to be very large, we are no longer justified in taking into account the
first approximation of perturbation calculus only, but have to consider higher approxima-
tions when computing the dipole moment induced in the system by the field E; in the presence
of E,. To solve our problem, it is necessary to carry out Dirac’s perturbation calculation
to at least the third approximation. Thus, ¥, being the wave-function of the k-th perturbed
state, we have '

¥, =2, (@ +a® +a@+aP +..} P €™ Ot (3)
m
where a,,(0) = §,,, and the remaining time-dependent coefficients a, a®, ..., can be
computed from the differential equations
ihal*th = 3] {(m|Hyn)+(m|Hyln)} a®) eemnt 5 =012, ... )
- .

The perturbation matrix elements are
(mlHjny = [ WiouHy Woudr, (miHn) = [ Wo,Hy¥o,dv

¥, and ¥, being the wave-functions of the non-perturbated system relating respectively
to the states m and n, while w,, is the Bohr frequency for the transition m—>n.

By Eqs (1) and (2) and on integration of Eq. (4), we obtain the coefficients of the con-
secutive approximations as follows (cf., Kielich 1963 c):

al) = % {a*(+ wy) By e + apk(—wy) Efpe™ ™ +
+ a;;’k( + wy) Eg;ge"“’" + a}”k (—wsy) Eyp eio) gomit
% (W% + oy, + 0p) By B o0t 1 b (4 oq, —wp) By By, glor=o g
+ B (—aoy, + g) Epy B 7O 4 bR (—oy, —ay) By By e

+ BpR(+ g, + wp) EHES, 204 1 bR+ g, —wy) Egy By, +

o® =

+ b;"f (—wy, -+ wy) Ez—ﬂ EzJ; -+ b:,f'f (_‘wza_wz) Ez_ﬂ Ez—y "'—izwzt} eiwmkt’

1 ‘ . e
o = 5 {chs (Fon, +og o) B By, By, GOt 20 L (50, F ooy, —ag) By Egyy Egp €™ +
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+ c,';"ﬁ,( + 0y, —w,, + ) Ef;, Ey Ef, ¢t L. cg”i,’f;( + W1, — g, —w,) Eff‘, Eg, Esse (o200 4
+ C,'snfo (—w1, + @y, + wy) By B Egfy e 2000 4. Cg;fs (=1, + 0y, —wy) By B Egy e~ 4

" o im . S0 i
+ C?ya (—w1,—w,, +wy) El,s E2v E;se o Czny’fs (_wl"wza—wz) Elﬂ E2y Egse o t2o )t} eeme,

®)
with the notation
mh _ 1 (m|Mp|E) mk _ 1 (m|Mp|k)
ag (o) = b mp o, ap (£wy) = i wmkia’
mh _ 1 (m|Mpn) {n|M, k) (m|M,|n) {n|Mplk)
rlson so) =5 ), ot ) T oty £0) s L9
mk 1 (m|Mp|ny (n|M,|k)
bﬁy(iwza :l:wg) = ﬁ Z (wmki2w2) (O()nk :{:wz)’
m 1 M M.k
bﬂVk( thza :sz) = fﬁ Z <m]6()mi](7:)>nk<;la)2)y] >9
i 1 (m|Mp|ny {n|M,|r) (r|Ms|k)
Coyps( =y, g, twy) = 73 nz {(wmkiwlizwg) (@t 2005) (@ £ 0y)
(m|My|n) (n|Ms|r) (r|Mpk) . (m|Mo|n) {n|Mp|r) {r|M,}k) }
(wmk iwl :JL_‘2602) (wnk :LL_’C()l iwz) (wrk :twl) (wmk tw, ﬂ:zwz) (wnk ﬁ:wl iwz) (wrk in) ’

(m|Mpln) (r M, |r) (r|Mo|ke)

mk 1
Gl L on, o, For) = 15 Y {

7 (wmk ﬂ:wl)wnk(wrk + w2)
(m|Myjn) (n|Ms|r) (r|Mj|k) (m|Mp|n) (n|Mp]ry (r| M, |k) } ©)
(@me L-01) (k01 F0y) (@ £01) (Ot £07) (O £01 L00) (0, +w,y))

By (3), the matrix element of the total dipole moment of the quantum system on the
latter’s transition from state & to state [ as a result of the weak field E, and in the presence
of the intense field E, is given by ‘

(KMl g, = [ VM, Pidr = (kML) 6+

1 . ,
g LAY (4 o) By o g () Eion—onny

1 ot . it
+ o (Ba, (0, + @) Efy B @rostomr y BR(L oy ) B By o —ostom 4

_{_B‘%y (_w1’+w2) El—ﬂ E;; e—i(w1~w.,—wm)z+ Bzf?y(_wlv_wz) El_ﬁ E2_V e~i(w.+w,—w}ct)t}+

1 .
+ __1‘6“ {CZ)‘VJ (+ 0)17 + a)2? + w2) E;/-’} E;;' E;; el(wl+2w2 #wkl)t +

+ oo (+ 1, + g, —a0g) By B By s .
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+ 6511373( + ey, — g, +wp) B Ey Egh RICR L
+CE (g, —g,—wy) By By Egy ¢ 30t omt .
+ Chys (— 3, 4 0y, + wq) By B, ESy g~ i@1—20 o)t |
G, (—oog,+ gy—0y) By By Egye™ @m0 4
+ Cs;l?rﬁ(_wla — g, + ) E;ﬂ Ez"y E2+a e H@r—mrDr
-+ Ci;iyé(_wl, — Wy, — ) El—ﬁ EZ_V Es e“i(w1+2wz—wkz)t} ... o )

Here, the first term, which is independent of the electric field strengths, describes sponta-
neous emission or absorption of light of the frequency w,,. The second term, together with
the tensor

Aoy = (m|Ma|n) {Smmaf (1) +af"(F )b}

mn

Wml £y O 01

1y {<k$Ma|m> (iMJDy , CHMymy <m|Ma|z>} ©

accounts for the linear polarization of the system by the field E;; this is precisely the result
obtained by Kramers and Heisenberg (1925). Aﬁfg is the optical polarizability tensor of
the system in the transition k-l

The next two terms of Eq. (7), which are proportional to E,E, and E,E%, describe the
non-linear optical polarization of the system arising through the effect thereon of the strong,
oscillating electric field E,. This non-linear polarization of the quantum system is character-

ized by the following tensors:
B (£ w1, £wy) = X (m| M| n){d V(£ o1, ) +
+a"(F ) (£ wg) + @ (F wp) a5 (201) + b (F o1, F 02) 0,1, ©

CH (£ 0y, 0y, £ 05) = 2 (MM 0By Chys (£01, L3, L) +

+ AT 00) U5 g, - 00) + BT oy, T 0g) @l 007) + by (F o0y, F 050 () +
+ B (F o) i+ w1, -k @) + Chns(F 01, F 0, F03) 8,53, (10)

wherein the coefficients depending on the frequencies w; and o, are given by (6) (the explicit
form of Eqs (9) and (10) is given in Appendix C).

3. General form of the tensor of light scattering

We are now interested in the dipole moment P induced in the quantum system by the
field E; in the presence of the strong electric field E,. The matrix element of P is given by

Py = (kM |Lyg,, g, —Ck| M |Lye™. (1)
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We define the tensor (referred to the axes XYZ of the laboratory coordinate system)3

——t
Iyt = (PaPop)a%s (12)
which we shall call the tensor of light scattering for the transition k- in the presence of
a second light wave with electric vector E,. The symbol ( >§:’ denotes the statistical
average in the presence of the field E,; —¢ denotes time-averageing.
The expressions of Eqgs (7) and (11) enable us to rewrite the tensor of light scattering
as follows:

1
kl E —w, : 2 - -
7% - > (I;:+wm+[:;+w2+wm+ I w,+wkz_}_]‘;u1;+ WsterL | e 2w, @kt) 4

+ ; (Iw1+wuc+ I“"+“’ +wzlc+]w1 wz+wlk+Iw1J‘2wz+wllc+ le ‘”z+wlk) (13)

Non-coherent scattering of light with the frequencies w, +-wy; is described by the tensor
Wh, W 1
L5 = < (og+ o) {(Afi (o) Al (F o)) +

1
A (Ao (£ 1) Clgg (F 0, 03, F 0y) + Gl (o 0y, = 0, F 0g) A% (F 0) Y2 By By, +

< Covl,u (£ 01, & 0y, F 0,) CX g&x (F @1, F wgy = wp) >E Ef EyL ES, Ez’J; } Ef, Ef, (14)

whereof the first term (linear in the incident light intensity I =1/, EX ET) determines
normal Raman scattering, whereas the subsequent terms descrlbe the variation to which
the Raman scattering is subject under the influence of an intense electric field E2 of zero
oscillation frequency (w, = 0). The further non-linear contributions to Raman scattering
are given by the tensors (w;7w,20)
1
ko, 3] k! A

L= = = (op £ 0y 09 (Byy(+ 0y, £ ) Bly, (F oy, Fon))f EE B, B3 By, (15)

and

JoRt ot 20,
ot

128 (wps £o; +20,)*( C M,u( +00q, 1099, T ,) ngﬂx(:F Wy, F Wy, F w2)>Ain EY, EiEiE; 3 Ly
(16)

® The symmetric form of the light scattering tensor is

t —

1 T = N
(I m:)s_ . ((Pak1+Palk) (Boa+P. lle)>Ea =5 {(Port Pot) g, + (Lot Poir) g}

o .t t 1
kl kl &l
as  Pop Py = alkP 1 =10. Thus (I;); = 7 (Ior + Lo)-



141

It is thus seen that the intense electric field of frequency w, enforces additional, non-
-coherent scattering of light with the frequencies w,+w,4-wy and w, 42w, +wy. In the
general case, as can be seen from (13), the fundamental oscillations of frequency w; and the
transition frequencies @y, are increased or diminished in the scattered light by the amounts
w, and 2, in various combinations. The classical interpretation of the non-linear terms of
Raman scattering is given in Appendix A.

In the special case when the quantum system reverts to its initial state, & =/, the
scattering tensor (13) reduces to

I = I It s Iy o I [ =20 (17)

herein, beside scattering with the frequency w, of the primary light wave, appear additional
scattering components with the harmonic frequencies w; 4w, and o, +2w, resulting from
superposition upon w,; of the frequency w, of the field E,.

The tensor

(13 1 [} ()] 1 w @ w S i
T = o [(AS AR + A2 Clt Gy A B

o

1 © ° ° ° o °
+ T6< o Cotg Y EzzEzyEzasz‘*‘---} EE, (18)

describes coherent scattering of light, consisting of linear, Rayleigh light scattering, and
" non-linear light scattering due to a strong field E, of zero oscillation frequency. The tensors
A% = A¥(+w) and C%, = C* (4o, -0y, Fw,) can be obtained explicitly from (8)
and (10), respectively, putting & = /.

The remaining tensors of the expansion (17) are determined, with regard to (15) and
(16), as follows:

0+ 1 @, + 0, Royt+ w,\Avy Y LT
Lo = ”g(wliwz)Ll(Baw.i 2Br@/j: Z>1542 By, BroEorLyy (19)

1 o e e e e e
Jout2en — 198 (0, izw2)4<czﬁﬂ;2wgcfgﬁ2w’>gf By By By o B Ey

" (20)
where the notation B®.=“ = B¥ (tw,;, +w,) and COZ2% = Cffvg( +wy, +w,, +w,) has
been introduced. From (6) and (9), we have for k =/

opro, _ 1 (m|Mpln) (n|M,|k) (m{M,|n) (n|Mj|k) ]
B = s Z{<klM"‘|’”> [(wmkiwliwz) (nk0g)  (Omk£01 £05) (Wnk £ 007)

mn

(k| Ms|m) (n|MIR) - Ck|My|m) <@|Mﬁlk>] +
(wmk:le) (wnk :th) (wmk;wz) (wnk ZJCwl)

iy |

[ iy oy ) G
(WmeF 1) (OmpF 0, F ) (Wmr T 03) (WnrF 01 F )

] <n1Ma|k>}- (21a)
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Similarly, we can derive explicitly the tensor C2*“ on recurring to Egs (6) and (10), for
k = I; namely, we have :

2w, 2 (n|Mplr) (r|[My|m) (m|Mo|k)
Caﬁ%z a3 Z {(klMain> [(w,,k +0; £ 2m,) (W 20,) (Omr 105)

(| My|r) {r|Mo|m) {m|Mj)k) 4 (n|Ms|ry {r|Mp|m) (m|M, |k) ]
(Wnk £y F-20,) (W +-y +wy) (Wmk ;) (Wnr £y 3 2004) (0pr +0y £ 0y) (Omk £ w,)

M) M MR (Ml Mgl <al
(wrk:le) (wmk:}:w]_:*:a)z) (wnkiwg) (wrk:sz) (wmk:le:F(A)z) ((A)nkiwg)

+{m|Maln) [

(kM |m) (n|Mplr) r|Malk) (kM |m) (n|M|r) (r|Mp|k)
(Ome T 0g) (0np ) F0,) (OhE0y) (Wt F0p) (-1 L0y) (04 +c0;)

Ch[My|m) (nlMy|r) Cr|Molky - CE[Mry {r|Molm) (n|M|k) ] N
(wmk:':wl) (wnk isz) (C()rk :i:wz) (wrk:':wZ) (wmk:F2w2) (wnk :‘:wl)

[ (k|Ms|r) {r|M,|n) {n|Mg|m) (k| Mp|ry (r|Msln) (n|M,|m)
(@2 F 0g) (Wnr T 2005) (Wne T 01 F205) (W F y) (0T 01 F @p) (0mr T 0, F 20,)

(k[ Myfr) (r|Mp|n) (n|Mo|m)
(@rTF 0o) (WmtF 1T W) (Wn T 0y F 200,)

] <m\Malk>}- (21b)

4. The tensor of light scattering in the classical case

We now proceed to the discussion of the scattering tensor I** for the purely classical
case. To this purpose, we go over from the tensors A4, B,,, and C,z 4 to the tensors Ty
bes, and c,g,5 related with the molecular coordinate system and characterizing the classical
properties of the isolated molecules. On averageing in (18)—(20) the transformation coef-
ficients between the laboratory and molecular reference systems over all possible molecular
orientations with equal probability (here, we omit the terms proportional to E2E}, to be
discussed in Appendix B for optically isotropic systems), we obtain

0, 0} 1
I7 = - <a¢z'yaﬁt§> [50asdys f10:+ 0 wpydf2ot] T og ( QayCpoen T+ Cayen“ﬂf’) [355,435;;«5557,5’ Tz +
60 28 :

+ 7(5uﬂ0vdeng 207+ 6ydaenaﬂg 307 T 5sn6¢ﬁy6g 401) + Cagyseng 5ur] +.. } ) (22)

[oos (0, £ wp)*

ot 1680 <bowebﬂ6n> {3561;667/655176’101 + 7(6zﬂ(’yﬁsng2ar -+ 6yéaenzﬁgaar “+-

+ 65'7 T apysl: 401) + Capyoens 501} » (23)
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where we have used the notation
- 02 o o ] o 02
‘flo"z - 60'1E1_E10-E11’ f2ar = 3E10E11'_601E1’

Blar = 6arE12E22+2E102’72:(E1 : ig2)_EO‘]?éZnEO‘2t_Elal%11E‘22_6ar(El : Ez)za

o o

Boor = maarEng_BE‘loé‘Zr(El ) E2) +E°’12‘i’20E°'2t+E’10E0111E222+2601(I§1 * ‘E°2)2’
83r = —601E0112‘é22_3E°’102:21(l§1 : EOZ) +éon2aé2r +2E°'10E17E22 +6or(13“1 : E2)27
810r = _6atE°‘f Eg _3E°’10E°’21(E°1 ' E2) ’I‘Zéf E°'20E0'2r + Elaivlrzjzz +6ar(lj_"1 ' Ez) )

G = 205 E B} +9E By (B, - B)—3E3Ey By — 38, By E3—30,(Ey - B, (24)
and
Oapys = Oaplys+ 04055+ 0,503,
Gapysen = OupTysen + OayOsens ~+ OasOengy & OaeOupys + Oy Opyse (25)

0,5 being the unit tensor.

The expressions (22) and (23) hold for scattering molecules of arbitrary symmetry,
and for arbitrary mutual configurations of the vectors E; and E, as prescribed in the la-
boratory reference system. We shall discuss these expressions for certain types of symmetry
of the scattering molecules.

Molecules with a centre of inversion

For the case of molecules having a centre of inversion, all elements of the tensor b,
vanish, and so does the scattering tensor J“%“:. Thus, we have now to consider only the
scattering tensor I% given by (22).

Let us begin by considering molecules possessing the symmetry of the point group
Dy, (e-g., C4Hg), for which the non-vanishing elements of the tensors a,z and c,g,4 are given
as follows:

Gpp = @110,5+(a33—ay1)k,Kp
Capys = (cllll—01122_201212)(iuiﬁiyi6 +j ujﬂjyjd) + (112 —Cr1sa—C3311 +2C1212— 41313 T Caam) ¥
X keghegh, s+ C1190(0,50,5— Oapk os— 0,k hig) + C1918(00y O + Ops0p,) + Cr138006F, g +-
+C33110,5k o Kg + (C1313— Cr212) (Ogykishs+Oyskpk, +Opokigk, + g ke Ks)s (26)

i, j, k& being the unit vectors of the molecular reference system.
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For molecules of the point groups Cg, (e.g., CgClg) and Dg, (e.g., CgHg), one has to
put herein 2¢1919 = 191111200 Whence by (22) we have

4
91

o o o o o a
I = 0 {5(12E10E1z + a%%4(305. E2+ 1o F1) + 1a [7(2eq111 +261190 + 21155+

+2¢3511 +C3333) (08107 +Gaor + Gaor +O&yor + &50r) +14(361111— Cr100 + 41313+ Cgg) (Zoor+
+ &307 + &507) +2%a(C1109— C1111 T 261313 T 23333) (78200 + 7830+ 48 507) +274a(C33 + 205311 —
—C1111—Cra99— C1133) (35810r + 78200 + 78307 + 148400 +285050) +42%4(Ca355 +201133—

— 1111 Cr12— C3311)& 5011} , (27)

‘where a = (ag3-+2ay,;)/3 is the mean polarizability and x, = {a33—ay)/3¢ — the optical
anisotropy of the isolated molecule. The expression of Eq. (27) is moreover applicable to
a great variety of linear molecules belonging to the point group D, (e.g., Hy, Oy, CO,,
CS,, CyH,, CH,, and so forth).

In particular, in the case of the point groups T}, and O, (e.g., for SFg and UFy), we have
to put ay; = agg = @ and ¢y3y; = €3993, Cr1e2 = Cuizs = Caann Cra12 = Ciz1s 10 Eq. (26), whence
Qg = a’aaﬂ’ Capys = 011226uﬁ6y6 +Cia13 (6a76/36 +6a66ﬂy)+

+(eumn _01122_201313)‘(?‘11'/31';,‘.6 +iadplylstkFgk,fs)s (28)

and the scattering tensor (22) reduces to

" 1 ° ° 1 [e] o <
I: = 5 o} {a2E1aE11 + 10 al(cy111 +4¢1a15—2¢1313) EroE1 B3+

+2(c1111—Cr120 +3C1313) EroLolEy - Ez)]} . (29)

In the case of isotropic molecules 2¢15;3 = ¢4117—Cy129, and the above formula becomes
simply

1 O o O O [s] o] [e]
L} = El w} {ath,El, + % [er120B10 E1o ES + (Ca11—Cuaze) EroEadl By - Ez)]} (30)

Molecules without a centre of inversion

We shall now consider the scattering tensor J2*“:, which is non-zero for molecules
possessing no centre of inversion, since in their case not all elements of the tensor b,
vanish.

Y
The components of the tensor b, of the symmetry group D, are of the form

bazﬂy = bya3 (iuf,s +j¢iﬁ)ky -+ bzal(fukﬂ + kozjﬂ) iy + b312(kaif3 + iakﬁ)jy’ (31)

consequently, the scaltering tensor (23) becomes

4 O o o Q o O
rrte = CZO g e ) (50 B2 By B+

+3ﬁ%-§26§21+3i’16§11%5+3601’(E01 ) 1%2)2}- (32)
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Hence, for byy = bap 7 bysg, We obtain an expression for the point group Dy, (e.g., CgHy).
If, in particular, byy; = bggy = bg19, Eq. (32) holds for molecules of symmetry T, (e.g.,
CH,, CF,, SiCl,, etc.). Tetrahedral molecules also have a scattering tensor I} given by (29).
Molecules of symmetry Dy, (e.g., BCl, CgHg, CgH3Cly) have the following non vanishing
elements:
bqf}y = blll{(iaiﬂ_—jujﬁ)iy_(iajﬁ +jaiﬂ)jy}7 (33)
and the tensor [+ ® is obtained in the form of (32) on replacing by, +bgy; + by, therein by
2b2,,. For this group, the tensor I3} is valid in the form (27).
Let us now proceed to the symmetry of the point group Cj, (comprising the molecules

NH,, CHCl;, CH,CN etc.), for which
basy = Dasellinlp—iaipls— (lafp+ipia)iy} +baaskyhigh, +
+by13(0apk, — ko kgk,) b3 (Og, Fep +0p oy —2k gk ) 5 (34)
Eq. (23) now yields the result

4
L= = (o0, £ )% {(b333 +2b313+4bs1 +4b3es) [358107 + 14(go5r + L30r

o 1680
+ 8aor) +0850c] +(bag +3b113)? (T840 + 8 s0t) +4(bga3 +2b115) (bags+ 2by31) 850z +
+ (333 +2bF31—2b%13 +4bgg3by1g1 +4b151b113) (78207 + 7880 +48507) ) (35)

On putting herein by, = 0, we have an expression that holds for molecules of the point
group C,, (BrF;, JF;), Cg, as well as C, (e.g., CH, NH, NaCl, OCS, CICN, and the like).
For the last two groups, Eq. (27) holds also.

Similarly, the scattering tensors (22) and (23) can be discussed for molecules of the low
symmetry point groups Dy, (CoJay CoHy), Cop (Hy0, CHyCly, CgHNO, etc.), Cy (H0,), C;
(ONCl, CH;NO,), and so on. Within these groups, however, the tensors a,g, b,s, and cyg,s
possess a larger number of mutually independent components than above, and the formulas
for the tensors It and I**“: become highly involved; we refrain from writing them out

in detail here.

5. Non-linear variations of the Rayleigh ratio and degree of depolarization

Let us assume a weak light beam to propagate in the direction of the Y-axis of the
laboratory reference system with its electric vector oscillating in the XZ-plane at an angle
 to the plane XY (the plane of observation); thus, B, = (@ cos p +# sin ) E;, @, Y and 2
being the unit vectors of the laboratory system X YZ. The light scattered is observed along
the X-axis (perpendicularly to the direction of incidence), the configuration of the vector E,
in the laboratory system being, as yet, arbitrary.

If the scattering medium consists of a gas of volume J containing N mutually non-
-interacting molecules, Rayleigh’s ratio is given by the expression

2N
S = S (Iff}'ayr‘f‘I:fzazt)’ (36)
AVE?2

where ¢; is the velocity of light propagation.
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In the case of scattering by an atomic gas or by one whose molecules are optically iso-
tropic, substitution of the tensor (30) into Eq. (36) yields the relation

4N - o o . o o
S = c;-lf {0'2 sin® p+ % [c1100E3 sin? 9+ (Cri11—Craz0) (EoxFye sin g cos g+ E3, cos® y)] 3 EE,

(37
which, for non-polarized incident light (sin®y = cos?y =13, siny CE/) = 0), can be
represented as follows:

S—S8g _ 1 [[enss) 2 Cun T ‘nge\ e
5, 5{(—&-— ER+ (52 B, (38)

where S, = 4(w;/c;)* (N/V) a? is the Rayleigh coefficient in the absence of the strong
light beam (E, = 0).

By (38), two experiments with a strong light beam polarized and propagating with its
electric vector oscillating parallel to the Z-axis in the one case and parallel to the Y-axis
in the second should yield, respectively,

S—So___l_ Gui) 2 S_—i_l Cugel A
ooy (W) B wa S g () A 9

This enables us to determine separately the coefficients ¢;4;; and ¢;;55 of non-linear deforma-
tion of an isotropic molecule for the cases when the vector E, is parallel or perpendicular to
the plane of oscillation of the vector B, (the plane XZ7).

Defining the degree of depolarization of scattered light as

kk Wy W1 Wy
. Ioryuyr _ (Iar +Ia‘t+ )yO'yT

= = , 40
Lizore (4L 2oz, 4
we obtain for tetrahedral molecules, on substituting herein (29) and (32),
(@1+wy)*  [b1p5\2 (20 o2 2 P ang
= —— =2 . 41
D it sn® y | a {SE3+3E3,+3(Eax cos p+ Ey, sin ) (41)

We have here an interesting result stating that, although with regard to a weak light
beam tetrahedral molecules do not depolarize the scattered light at perpendicular observation,
it is sufficient to project a strong light beam in any direction and with arbitrary polarization
upon the scattering gas in order that some slight depolarization shall appear. We see, more-
over, that this depolarization, which is impressed by the strong light beam, is due in the
above approximation to the deformation by, alone and is thus related essentially with the
absence of a centre of inversion in the scattering molecules.

Eq. (41) yields, when the incident light is polarized with its electric vector E, oscilla?ing
in a plane perpendicular to the plane of observation (yp = 90°),

n 1 Wy \* [b1g5\? 25 o8
DL =g {1+ 32) (72 @ri-3in), (42)
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or, for non-polarized incident light,
- 1+ * (oi22\* (13834353 43
140 " +3E3,). (43)

For the case under consideration, the change in .S due to the strong light beam is given by
the formula

4 2 o o
5= SS 1410 <1+ w2> (%23) (29E3-+4E3) +
0 W,
1 o o
+ 10a {(crinn +4¢1102—2¢1519) EB+2(c1111— 1100+ 3C1315) £} (44)

It is thus seen that the Rayleigh ratio is affected by the two non-linear deformations 4 and ¢
of tetrahedral molecules. With b, = 0, Eq. (44) holds for octahedral molecules.

When caleulating D for anisotropic molecules of intermediate symmetry, in order to
avoid dealing with too highly complicated expressions, we shall assume the incident light
to be polarized with electric vector oscillating in the plane of observation (y = 0°). It is
readily seen from Eq. (27) that in this case in the absence of the strong light beam Dy =1
and in the presence of the latter

D—Dy =— (;") (B3, —E3,), (45)

with 2, = (2c3333—201193—2¢3511 -+ 71190 +6C1313—5¢5111)/7¢  denoting a parameter that
determines the anisotropy of non-linear polarizability of molecules belonging to the symmetry
groups  Cgy, Dy, and Doy, and ¢ = (Coapp +Capas +Cappad /15 = {3¢5335 +2(3e1111 +Craon +
+ C1133 + Cagn + 201010 +461313)}/15.

For CS,, we have (Kielich 1960) ¢ = 8.77x10-2¢ cm3, x, = 0.37, ¢ = 56.5x 10~

e.s.u; on the assumption of %, = %, we have, by (45), D—D, = —6.4x 10‘12(E°§z—E°22y).

Hence, clearly, the non-linear variation of D should be accessible to observation in CS,

when applying a strong light beam with electric vector intensity of at least 103 e.s.u.
For molecules of the symmetry group Dy, Eq. (45) has to be replaced by

[yt og)* [y 2 C¥e 2
D—Dy = { 2o \ax, +{- (E —E3,). (46)
For a gas of molecules having the symmetry C,,, Eqs (35) and (40) yield
() +(D o o
DDy = — S0 300y by + 6+ 3Gy + Pga— o)} (B Ey),
(47)
this result, for byyy = 0 and by = 0, reduces to
Wy -+ by,
D—D, = ( 114“)42) (a ) (E2z E2y)’ (48)
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where 2, = (bygy—by13)[(bazy +2b113) = (bgz3—by33)/30 determines the anisotropy of non-

Jinear polarization of an axially-symmetric molecule without centre of inversion.
Applying the following values for chloroform (Kielich 1962): ax, = —0.78x10~24cm3,

by, = —0.83 X107 e.s.u., we obtain from Eq. (48) for wyfw; = 0.8, D—D, = — 86X

X 10—12(E§z—é§y). At EO'ZZ = 100 e.s.u. and f;'zy = 0, the non-lincar change in degree of

depolarization amounts to D—D = —107%, whereas for E,, = 10%e.s.u. itis of the order of
10% and, consequently, is accessible to observation.

If, instead of isotropic averageing of Eqs (18)—(20), we recur to averageing with Boliz-
mann’s statistical factor exp {—Et/kT} containing the time-averaged potential energy of the
molecule in the strong electric field F,, additional contributions to the tensor 1% will appear
accounting for the role played by the effect of optical molecular orientation in light scattering
(see, Kielich 1963 a, c). For the conditions of observation specified above and on the assump-
tion of axial symmetry of the molecular polarizability ellipsoid we have for the change in D
resulting from optical molecular orientation (Kielich 1963c)

3ax,

DD, =

This yields, for 7' = 300°K and the values for CS, already specified, D—D, = —33x10-12

(i’gz—i’gy) and, for CHCl;, D—Dy = 8%x1012 (Egz—Ezzy) On comparing these figures
with the results calculated above, it is seen that in the case of CS, the contribution to D due
to the effect of molecular orientation is almost five times larger than that due to non-linear
deformation of the molecule, whereas in CHCl;, on the contrary, the contribution to the
non-linear variation of D from the effect of molecular orientation is almost 10 times smaller
than that resulting from non-linear molecular deformation. It is to be expected that in all
cases of anisotropic molecules without a centre of inversion the changes in the light scattered
are due chiefly to the effect of their non-linear deformation.

6. Results and conclusions

From the preceding considerations, two basic processes can be distinguished in the
mechanism of non-linear light scattering, namely, non-linear polarization of the atoms or
molecules due to an intense, optical electric field, and a process leading to some measure
of ordering in this field of the polarizability ellipsoids of the optically anisotropic molecules.
Which of these two processes will play the essential or sole part in any particular case will
depend primarily on the structure and symmetry of the molecules, on the temperature
at which the substance is investigated, on its dispersion and, in dealing with gases, on the
pressure. Although the final results derived here are strictly applicable to a rarefied gas
where intermolecular interactions are negligible, there are nevertheless from a formal point
of view no difficulties in the way of their extension to a condensed gas or a liquid. The effect
of intermolecular correlations, both radial and angular, upon measurable quantities such
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as D and S can be calculated as was done for other non-linear phenomena in liquid dielectrics
(see, e.g., Kielich and Piekara 1959, Kielich 1962, 1963d). However, owing to the appearance
therein of additional terms, the respective expressions for D and S (which, as we have seen,
are already sufficiently involved for the gaseous state) become even more complicated.
In this respect, a glance at the formulas of earlier papers (e.g. Kielich 1963b, containing
a discussion of the changes in D resulting in liquids from an applied strong DC electric or
magnetic field) should be convincing. It was with the aim of avoiding such complication
that the present theory has been restricted, maybe justifiably, to scattering media in which
intermolecular interactions are absent or, at the most, very weak. Besides, the theory in the
gaseous state approximation presents the advantage of providing information as to the
properties of the isolated molecule.

Since the anisotropy of linear polarizability », is known for many kinds of isolated
molecules e.g. from measurements of linear light scattering or Kerr’s effect, Eqs (45) and
(48) will allow to determine simply and directly the anisotropy of their non-linear polarization,
%, or %, as soon as the variations in degree of depolarization become accessible to measure-
ment. On measuring some quantities, e.g. D and S, in different appropriately chosen
experimental conditions, it will be possible to determine separately the tensor components
b,s, and c,g 5 not vanishing for the symmetry group considered. Thus, investigation of the
effect of a laser beam on the scattering of light can provide one more method for determining
the parameters of the various non-linear optical deformations of molecules.

The discussion of § 5 is easily generalized to other experimental conditions, e.g. to
cases when the scattered light is observed at an angle differing from 90° with respect to the
direction of incidence. For this, the reader is referred to another paper (Kielich 1964a)
dealing with the simpler case when a single, very intense light beam is used only. Also the
effect of an optical electric field gradient on the scattering of light can be calculated as for
the case of a D C eleciric field gradient (Kielich 1963e).

The author wishes to thank Professor A. Piekara, Head of the Dielectrics Laboratory,
for his kind interest throughout the present investigation. The autor is indebted to K. Flatau,
M. Sci., for the English translation of this paper.

APPENDIX A

Effect of the oscillations of nuclei on non-linear light scattering

We shall present here in brief a simple extension of Placzek’s (1934) linear theory of
polarizability to the case of non-linear Raman scattering.

Let us consider molecules in their non-degenerate ground electronic states and assume
the frequencies of the own oscillations of their atoms to be small as compared with the
frequencies w; and w, of the incident light waves.

The dipole moment component induced in the molecule by the electric field E, =
= E cos ;¢ in the presence of a strong electric field E, = E'2 cos Wyt can be written in the
form of an expansion, thus
1
2

Pa = {aaﬁ +bopyEyy €OS ot + - Cappalin, Eas cos® wet + .. } Elﬁ €OS (Wb, (A1)



150

On the assumption that the oscillations of the nuclei lead to distortion of the electron
shell of the molecule, the tensors a,g, b,g, and c,g,s are functions of the normal coordinates
¢;i = 1,2, ... n) and can be expanded for small oscillations in a series in powers of ¢;:

3[ + (9(1/“[3) + l (92(10,/3 ) + 1 ( 93%5 ) +
Oop = - @ iqi .
] of aqi Oq 2 9(];9(]1 qu aqzaqjaq qiq9iqk
7 Ibagy 1 [ I2byg,
bapy = bagy~+ ( 9q: )091+ D} (991'9(],‘ Oqz%'*‘ ooy

acaﬁ'yé ]. 9200,,3,,,5 A 2
Cafiyd = Cuﬂy6+ ( 9(]1 ) qq -+ ? (aqzaqj o qij'l- ceey ( )

o]
with ‘?'ap’ b4, and SW, denoting the polarizability tensors of the molecule at equilibrium.
Assuming the i-th normal oscillation of the molecule to occur with frequency w; and
phase ¢;,

g; = q; cos (Wt +@), - (A3)

we can put the expansion of (A.l), with regard to (A.2), in the form

pa =ﬁ¢+AP¢, (A4')

wherein
o o 1o, o 2 od 1o o o
Pa =\t 4 CapysEiayEos + ... Fap cos ot + 3 bagyEysEgy {cos (w; +w,) t+

1, o o o
+ cos (w,—wy) t} + ) CaproE1pEoyFias {cos (w1 +2m,) t+ cos (w;—2w,) £} + ... (A.5)

is the induced dipole moment component of the molecule at fixed positions of the nuclei,

while
1 ([9ag 1 [Ocapps) o o
Ape = 5 {( 54 ) g (—aqT Tt } X

X 51’;1‘31;1 {cos [(w; +;) t-+ @i+ cos [(w—w)—@il} + ...

Qb o8 ©
Ly (*Qiﬂl) qik1pEs, {cos [(0; +wy+w)) t+@i] + cos [(0;—wy+wy) t4+¢i] +

+ cos [0y +wy—a;) t—@;] + cos [(wy—ws—w;) t—@i]} + ...

1 /& o8 © o
+ 16 (_%"qﬂ’i’) giEapEgy Eas {cos [(y +2w,+0;) t+@i] + cos [(wy—2w, +a;) £+ @i] +
i /o

+ cos [(w; +20,— ;) t—@;]+ cos [(w;—2wy—wy) t—@i]} + ..., (A.6)
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describes the change produced in the oscillating dipole moment by the oscillation of the
nuclei.

By Eq. (A.5), in addition to radiation with the frequency w, of the incident light wave
(linear Rayleigh scattering), there occurs radiation with the harmonic frequencies w,+w,
and @; +2w, (non-linear Rayleigh scattering); whereas the expansion (A.6) points to the
possibility of the appearance — beside normal Raman scattering with frequencies w; +w; —
of additional scattering with the frequencies w;dwytw, ©,+w,Fw; @ +20w,+w;
0, +2w,F w;, etc. characteristic of non-linear Raman scattering. Obviously, this last type
of scattering requires appropriate selection rules to be established for the matrix elements
of the non-linear polarizability tensors, as was done previously for the tensor of linear po-
larizability (see, Placzek 1934, or Bhagavantham 1942).

APPENDIX B

The tensor of light scattering for optically isotropic molecules
On putting 2¢;315 = ¢1313—Cpiee in Eq. (28), the scattering tensor components of Eqs
(18) —(20) are reduced to a form valid for optically isotropic scattering molecules:

1 o o 1 o o o
Iy = 5 e {(aw‘)z E B+ 2 a®[2c{9s Ero By Eg +

.

o e e o e 1
(et —citen) (EioBor+Eo  Byy) (By 2)] [(01122) 1¢xElrEz4 -+
+ctaa(citir —Cie) (BygFar+ EaoEy) (By - Eo) Eg +(cihy —¢a9) 2 Eoy Eo (B + Ep)?] + b
(B.1)

1 o o
Wy -+ 2 W, — 4 @ ﬂ;2m 4 a) +2w,7 w+2w, L)
Ioy==es 128 (01 £2wp)* {(cii2a EluEl'rE2 cithe Hertin —cifsa )X

X (B By + Ey, Evy) (By - Bo) 3+ (i — 143" ™) * Eo Eae (B - Ep)?}. (B.2)

Assuming for simplicity that the two light vectors E; and E, oscillate in the same
direction, though the propagation directions of the waves conveying them need not be
identical but lie in one plane, and taking account of ¢y3;, = 3¢y195 = ¢, we can rewrite (B.1)
and (B.2) in much simpler form,

I = w1 {a,‘"x—{— %c“"Eé} ivlal%lu (B.3)
[ = (2w s gy (B4)

On applying the classical theory of the anharmonic oscillator under the effect of two
periodic fields E, and E,, we derive directly the dependence between the molecular deforma-
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tion coefficients and the frequencies w, and w, of the fields (see e.g. Kielich 1963c, 1964b):

e

1

awx — Re —— e,
Z mi(w?—wi -1 w,)

1

etyi
¢ = Re Z mi(w—w} +ilioy)? (F—wf+ilw,)?’
(@20, _ Re Z ei‘l%‘ .
— mi(of—of+ilio;) (@f—of+iliwy)? [0} — (0 +20,)* +il {0, +20,)]’
(B.5)

herein, ¢; is the electric charge of the i-th electron of mass m; oscillating with the fre-
quency w;, ¥; — the anharmonicity constant, and I, — the damping constant. Summation
in the expressions of Eq. (B.5) extends over all the electirons of the atom or molecule.

In the region very far remote from absorption lines of the gas under consideration,
the coefficient of non-linear deformation c¢ is of the order of 103 e.s.u., so that ¢/a is at the
most of order 10712 and the non-linear contribution to the scattering tensor is, relatively,
vanishingly small. However, by (B.5), in the immediate neighbourhood of an absorption
line the coefficients of non-linear deformation can attain much greater values and we can
expect considerable non-linear light scattering from an atomic gas or from one consisting
of optically isotropic molecules.

APPENDIX C

ay and Cop
On substituting the coefficients of (6) in Eqs (9) and (10), we obtain

Quantum-mechanical form of the tensors BY

(n|Mpg|m) (m|M,|1))
(wn1 001 L) (01 F05)

Bz,lgy(:[:wl, tawy) = ;% 2 {<k|M¢]n> [
(k|My|m) (n|Mp|l)
(wmk:ng) (wnliwl)

(n|M,| m) {m|Ms|l)
(@, +05) (Omit-0y)
(k| Mp|m) <n|Myll>] [ (k|Mpln) (n|M,|m)
(@mrF ;) (@n£0y) (0nTF ;) (WmpF 0y F0y)
(k|My[n) (n|Mj|m)
(nk T 03) (Wme T 01 F )

] + (m|Ma|n) [

:I (m|M¢]l>}, (C.1)

2 (n|Mjp|ry (r[My|m) (m|Ms|l)
Chot ko 0w 40 = 5 ) {0 |Gt 53 o
(n|Mylry (r\Malm) {m|Mp|l) (n|Ms|r) {r|Mp|m) {m|M,|1) ] +
(0L 0; £20,) (@01 +0,) (O@mLtw))  (WuEw; =20, (@n o) +0y) (Om Lo,




(k| Mp|m) (n[Myr) r| M|l (kM [r) Cr|Molm) {n| M|l
(| Ml [(wmkile) (n1 +2005) (w01 wp) - (W F ©3) (@mp T 200) (Wn1 +-0,)

(k|[Mg|ry (r|Ms|m) {n|M,\l) (k| Ms|ry {r|Mp|m) {n|M,|I)
(wrk:'i:w]_) (wmk:}:wlew2) (wnliwa) (wrk:sz) (wmk:‘:wlq:wz) (wnl:liwz)
(kM |my (n|Mplry r|Ms|l)y (kM Jm) (n|Ms|ry (riMe|l) ] N
(0 T W3) (1) £05) (011 w,) (W T 0g) (01 01 L 05) (Wp1E0y) |
[ (| Msry {r|M\ny (n|Mplm) N (k| Mglry (r|Mslny {n| M, |m)
(T 03) (0nrF 205) (OmeF 01T 209) (@ F 1) (WneT 01 F 0p) (@meT 01 F 205)

(kM |r) (r|Mp|n) {n|Ms|m) ] " }
(©pF ) (wnﬁwﬁf%) (omeF o E 20y | IMelDy (€.2)

(n|Mg|r) (r| My, |m) (m|Mo,|l) +
(wnk iwl) wrk(wmk:':wg)

Csf?vé( Ty, Loy, Fog) = % 2 {<klM¢|’L> [
(n|M,|r) (r|Ms|m)y (m|Mp|L) N (n|Mj|ry {r|Mpg|m}) {m|M,|ly ] N

(wnk:‘:wl) (wrkﬂ:w1$w2) (wmkﬂ:wl) (wnkﬂ:w1) (wrkﬂ:wl :l:wg) (wmk:i:wg)

[Ck[Mplmy) (n|My|ry (r|Molly | (k| My|r) (r{Mslm) (n|Mp|Z) .

(Wma T 1) War(WnTF 0y) (s +03) Omp{@nF07)

+ (m|Meln) [

CRIMglr) (r[Molm) (Mo (kM) Cr|Mplm) (0| M, 1D
(02 7F 01) (OmrF 01 2 0g) (W £0,) (wrk £ ;) (O T 01 F W) (0n1 F-03)

G GG GO, W M DD ]
(Wt F 05) (W) +05) (O TF@g)  (Omk T W) (Wi 00; F y) (0r1:007)

[<_£€lMglr> (r|My|n) (n|Malm) - CkIMglr) <r{Mon) (o | My |m)

(wrk + (,02) (Unk(wmk + (1)1) (wrk + (Ul) (wnk Fw,+ (02) (wmk + wl)

(k| M,|r) {r|Mg|n) {n|Ms|m) ] (m| M| l)}. (C.3)

(wrk + wz) (wnk Ty F wz) (wmk Foyp

On replacing in the foregoing expressions w, by —w; we obtain the tensors BZ%Y (F oy,

+w,), szgy,,(:F Wy, Ty, wy) and Cfé,w,(? @y, -0y Fw,). For k=1 the tensors of (C.1)
and (C.2) reduce to the form of (20a) and (20b), for which the symmetry relations of the
tensors B* and Cfgya are discussed in detail by Armstrong et al. (1962) for the general

afy

case of three light waves of frequencies w;, w, and ws, respectively.
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Note added in proof. Recently, this author had the pleasure of corresponding with Professor
Neugebauer and of receiving from him reprints of papers _published in Acta Physica Hungarica, 10, 221
(1959); 14, 77 (1962); 16, 217, 227 (1963),, and- in Z. Phys., 155 380 (1959) containing the
quantum-mechanical considerations and calculatlons on das Problem der Vereinigung von zwei Photonen
gleicher Frequenz an Molekiilen which. »6r?gm&lly enabled Professor Neugebauer to predict the light
scattering with double frequency that,cm take . place , on . entirely asymmetric molecules. Neugebauer’s
double-frequency scattering is a spemal case of, the scattering considéred in this paper for identical
directions and frequencies of the two Jight beanrs, (o, = w,) and Wy = 0; his results can be derived
from Egqs (19) and (21&) on makmg the: appropnate assumptlons



