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Summary. The present paper brings a classical theory of the non-linearly scattered light
engendered in an isotropic medium by an incident light beam of very great intensity (e. g.

a laser beam). The intensity of the scattered light is obtained in the form of the expression I, =
=A; I+ B], I>+..., wherein the coefficient A7 accounts for linear Rayleigh scattering, whereas
B, characterizes the additional non-linear scattering given rise to by the very intense incident

light beam of intensity 1. The coefficients 4] and Bj, are derived in general form for an arbitrary
isotropic medium and are then discussed for the case of systems consisting of mtutually inter-
acting molecules, the latter being isotropic, or anisotropic with a centre of symmetry, or pos-
sessing no centre of inversion. From the numerical évaluations of the Rayleigh ratio S and depo-
larization ratio D, the non-linear variations of these quantities produced by a light beam of inten-
sity amounting to I=2 X 104 e.s.u. are shown to be accessible to detection in substances whose
molecules are non-dipolar and highly anisotropic (e.g. CSy) or in dipolar substances consisting
of molecules with considerable first hyperpolarizability (e.g. CHCI3). Investigation of non-
linearly scattered light, if experimentally practicable, will allow to obtain direct information
concerning the non-linear polarization (hyperpolarizability) of the molecules of various sub-
stances.

1. INTRODUCTION

In 1956, Buckingham published a paper [1] in which he proposed a theory
of the birefringence induced in isotropic media by a light beam of very high intensity.
According to Buckingham, the isotropic medium becomes anisotropic for two
reasons, In the first place, owing to interaction between the oscillating electric
field of the light beam and the anisotropic molecules of the medium, the latter
tend to become oriented with their axis of maximum polarizability perpendicular



44 S. Kielich

to the direction of light propagation, so that the body is now optically birefrin-
gent. This, obviously, is birefringence of a kind due to an effect of optical molecular
orientation resembling the electric and magnetic orientation introduced by Lan-
gevin [2] for explaining the temperature dependence of the Kerr and Cotton-
-Mouton effects. Secondly, an effect arises consisting in the induction of optical
anisotropy within the molecule itself, This is the counterpart of the electric non-
-linear deformation or hyperpolarizability discussed by Voigt [3], Born [4]
and Buckingham and Pople [5] in the theory of the electric birefringence of
gases. The effect of non-linear optical (as well as electrical) deformation can appear
even in inert gases, since the dipolar moment induced in the atom is given by the
expression [5]

1 3
m=aE+~g cE°+...

provided the intensity E of the oscillating electric field is sufficiently great. Here a
denotes the scalar polarizability and ¢ — the scalar hyperpolarizability character-
izing the non-linear deformation of the atom. ’

Thus, the constant characterizing Buckingham’s effect is seen to consist of a
term in ¢ accounting for the effect of optical hyperpolarizability and — in the case
of anisotropic molecules — of a second term proportional to a?«2/kT and accoun-
ting for the effect of optical molecular orientation (x, denotes the anisotropy of
the molecule, & — Boltzman’s constant and 7" — the absolute temperature). Clearly,
the experimental detection of this effect would require the use of a light beam of
very great intensity. Since the publishing of Buckingham’s paper, the techniques
of constructing high intensity light sources have made enormous progress and
the lasers operating at present produce light beams of an intensity that would have
seemed inachievable several years ago. At present the detection of the anisotropy
induced in a medium by an intense light beam is only a matter of evolving appro-
priate measuring techniques.

Thus, it is now the moment to proceed to an investigation of molecular light
scattering due to a very intense light beam. The point is that the intensity of the
scattered light, which commonly is a linear function of the intensity I of the inci-
dent light, can in general be a non-linear function of I provided investigation is
effected at sufficiently high intensity of the beam. The problem has already been
dealt with theoretically for two simple cases, namely for atomic gases and ones
consisting of isotropic non-linearly polarizable molecules [6]and for gases possessing
axially symmetric and linearly polarizable molecules [7, 8]. In the first case we
have non-linear light scattering due solely to the effect of optical hyperpolarizability,
whereas in the second case we have scattering due to the effect of optical molecu-
lar orientation only.

In the general case, the dipole moment induced in the gas molecule is given
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by the following expansion [5]:

m=a-E+5b:E>+ ciE+ ..,

where a is the polarizability tensor of the molecule and b and ¢ are the tensors of

its hyperpolarizability. The scattered light intensity with oscillations in the direc-
t

tion n is known to be proportional to the quantity (ih-n)z, where the line ———¢
denotes the time-average. In a first approximation it is sufficient to average the

— -t

quantities (m-n)? over all possible orientations of the molecule with equal pro-
bability. In the result thus obtained, the first term in a? E? determines linear Ray-
leigh scattering (since I=4E$) while the two remaining terms in b2E¢ and acEg
describe non-linear light scattering as due to the effect of optical hyperpolariza-
bility (the terms containing odd powers of E vanish on averageing with respect

to the time). In the case of molecules already possessing optical anisotropy, ave-
—t

rageing has to be carried out with the well-known Boltzman factor exp {—u/kT}=
—t —t

=1—u/kT + ..., wherein u is the time-average of the molecule’s potential energy,
p— 1

proportional to ax,E? in the first approximation [1]. Thus, in addition to the pre-
vious terms containing b2E4 and acE§, a new term proportional to (a%,/kT)Eg
and arising form the effect of optical molecular orientation appears in the expres-
sion for non-linear scattering.

The evaluations carried out in the course of the present investigation show that
in the case of a gas consisting of strongly anisotropic molecules, such as CS,, non-
-linear light scattering is primarily due to molecular orientation. On the other hand,
in the case of molecules presenting a small degree of anisotropy but whose first
hyperpolarizability b is large, such as CHCl;, the contribution to non-linear light
scattering due to the molecular orientation is quite negligible as compared to the .
very great contribution from hyperpolarizability. In dense media both effects, that
of hyperpolarizability and that of molecular orientation, undergo modification by
the appropriate parameters of radial and angular molecular correlations. It is also
worth noting here that, while investigation of optical birefringence (Buckingham’s
effect) will lead to the direct determination of the value of the second hyperpola-
rizability ¢ only, measurement of non-linear light scattering is apt moreover to
yield the first hyperpolarizability b of the (e.g. tetrahedral) molecule which is all the
more interesting as there is no other method of determining the value of b di- rectly.

In the present paper, from considerations of classical electrodynamics and sta-
tistical mechanics, a general theory of non-linear light scattering is developed for the
effect such as it can occur in an isotropic medium illuminated with a light beam
of very high intensity. The theory is discussed for several special cases and applied
for computing the non-linear variations of the Rayleigh coefficient and of the de-
gree of depolarization as due to such illumination.
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2. GENERAL THEORY

We shall consider a medium of volume V, macroscopically isotropic in the ab-
sence of external forces. Let E=E, cos wt be the electric field associated with the
plane polarized light wave incident on the medium. We assume that the wavelength
4 of this light is large with respect to the distance between mutually interacting mo-
lecules and, at the same time, that its oscillation frequency w is far remote from
the electronic absorption region.

Let us denote the direction of the oscillations of the electric vector E in the in-
cident hght beam by the unit vector e and in the scattered light by the unit vector
n. Obviously, n is perpendicular to the vector R, directed from the centre of ¥V
to the point at which the scattered light is observed. We at first assume e and n to
be oriented quite arbitrarily with respect to the fixed system of reference XYZ
located at the centre of the volume V. The n-component of the scattered intensity
at a sufficiently great distance Ry, (Ry>4), is given by the equation

t

. 1 /2n
I,= R(,(A )(M M,,n NgdE s , (1)

where M, is the a-component of the oscillating dipole moment induced in the me-
dium of volume ¥ by the electric field E of the incident light wave. The brackets
{ g in Eq. (1) stand for the statistical average in the presence of the electric
field at thermodynamical equilibrium of the system,

f¢ (r,E)exp { - v (I:%E)} dr

f exp { _v ST’,E)} dr

with U(z, E) denoting the total potential energy of the system at configuration ©
in the electric field E.

In the case of a weak electric field, the dipole moment M depends on E linearly.
If, however, the field strength is high enough, the medium experiences non-linear
polarization in addition to the linear polarization. In this case, the intensity I¢
of the scattered light must be an even function of the amplitude E,:

=3 ASEZ+L1BfEG+.. . =ASI+BSIP+... (3)

@

<¢>E=

—t
with I=E?=1FE} denoting the incident intensity and

A= ! o (M, M Se
n_.R.—-(2)<A’ 6E2 pn np E=0’
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1 ot =t ’ 4
Bf=_—— M .
n 6R(2) (A(D) {6E4 <Ma ﬁna nﬂ)E}E=o ( )

The first coefficient A of the expression (3) describes linear Rayleigh scattering
and the second coefficient BS— the additional non-linear scattering produced by
an intense light beam. By the deﬁmtmn of (2), these coefficients can be written as
follows:

——t
. 1 [2r\* *M, M,
An= ——2 (—w> a—ETv)—aéE;o—na np e}, ea> ’ (5)
! -t —t
g L (Y 0*M, M, 6 *M,M, &U Vs
"=6RE\ Jo0 A0 ARO ATO AR® LT n ese,e
6R3 \ o ( aE°aEgaE°aE° KT GECGEY OECOE]) ™#c1%%%
M, M,
kT 6E°6E,, n.nge, e6>< anan een>}’ (6)

where the brackets { ) without lower index denote the statistical average at
zero electric field, as resulting from (2) for E=0.

In the absence of an electric field, all directions of the unit vectors e and n with
respect to the fixed system of reference have the same probability, so that the pro-
ducts of their components appearing in Egs. (5) and (6) can be averaged isotropi-
cally and we obtain ‘

LX) X3 t
1 0*M, M,
Al —— 1—(e * n)?

n 30R2 ().(0) < anE‘; {5[ (e ll) :laaﬂ 576+

+B3G 02 =~1ogaly, ()

- —t r ¢ —t
B 1 2 \* < *M, M, 6 *M,M, &U y
"7 1260Rz\ io OEOGEJOE?OEY kT OEQOE] OE{OE]

A2 aZU' >

x{7[1=(e* 07104 Oysn+ [3(e " 1)~ 1 0oy )+ FEET ®)
where we have denoted
O agys=0up 015+ Gy 555+ 0,3 05y »
G apyson™Oap Tyson+ Oy Osenp+ Ous Oenpy+ Oae Opys+ Oy Opyse » ©9)

and &, is the unit tensor with components equalling unity for «=f and zero
fora##pB.
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Expansion (3) together with the coefficients (7) and (8) determines the general
form of the intensity of the non-linear scattered light in an arbitrary isotropic me-
dium.

We now assume that the polarized light propagates in-the Y-axis direction with
its electric vector oscillating parallel or perpendicular to the plane of observation
(XY-plane). If for simplicity the light scattered is observed along the X-axis, we
obtain from Egs. (7) and (8)

—_—0t

a M, M,
All=Ap=4!= 30R0< ) 35008 e 15— Gupnd)) 5 (10)
4 2M Mﬂ 4
_L 9R2< > an Eo (aaﬁyﬁ 250:/3 6y6)>+'§"A“ ’ (11)

Bllopl_plle_1 (2F * o*M, M,
2L 7 1260R2\ 20 <aE§aEgaE;’aE°»
t

et —t
6 *M,M, o°U

Al
- 75 - 12
KT OECGE? aEQaE,‘,’}( of Orion “"’7“"')>+3kT<aE°aE°> 42
I ..t oe
1 f2m\* *M, M 6 aZMaM 62U
Bl= () b f x
L 270R2\ o OE? 0E3 0EJ OE,) kT OE)0E; OFE; 0E,
t
8 2y
X (Cupyan =429 0,5)) +5-Bll 5 +—-- (34+—84] )<6E°6E°> (13)

where the lower subscripts || and L refer to twice the intensity of the scattered com-
ponent oscillating parallel or perpendicular to the plane of observation, respectively,
and the upper subscripts || and L indicate that the electric vector of the incident
beam is oscillating parallel or perpendicular to the plane of observation.

From Egs. (10)—(13) we see that, in general,

| 7i_ gl 1
Li=Iy=I #I].
Thus, the Krishnan reciprocal relation is satisfied also in the case of non-linear
molecular light scattering.
3.‘ APPLICATION OF THE THEORY TO SPECIAL CASES

If the volume ¥ of the medium contains N molecules of one species, we may
expand M as the sum of the moments of the individual molecules:

N
M= Y m?, ‘ (14)

p=1
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where m® is the dipole moment induced in the p-th molecule by the oscillating
electric field E. ‘

In general, the p-th molecule immersed in the medium is acted on by the effective
electric field E® +FP, where F® is the electric molecular field existing at the centre
of the p-th molecule and produced by the remaining molecules of the medium in
the presence of the field E. On expanding the moment m® in powers of the field
E® +F® we obtain for its a-component [9]

mip)=a£§)(E§p)+F,(f))+ 31 bf,,’?y(Efg") +_F§p)) (Eg”)+Ff,P))+

+ 6 CDNEP +FP)(EP +FPY(EP +FP)+ ..., 15

where ag‘l}) is the optical polarizability tensor of the p-th isolated molecule, and ba(,‘,{,)y
and c,(,ﬁ)ya are the tensors of its hyperpolarizability. In the case of optically inactive
substances and throughout spectral ranges widely remote from those in which
absorption appears, the tensors a,s, bys, and c,g,; are symmetric in all suffixes
and real.

In a first approximation, the molecular field F? appearing in (15) can be neglec-

ted and we have, by Eq. (14),
. e t 4 N N 0
, Mity=3 0* 3 ¥ {aafy+ b2 b%, EOED+ 6
p=14q=1 ( )

1 ( 050, - 0 10
+T(ag)c%)sq + cgzn aﬁ%)) Ee En +.. } Ev E& .

To the same approximation, the time-averaged potential energy of the system
is (cf. [1]):

t N ’ "
UG, B)=U(r, 0~ } ¥ {0l + 5o By 5+ } B By - (17)

1.3 ATOMS AND ISOTROPIC MOLECULES

At first we shall discuss the simpler case of a medium consisting of atoms or
isotropic molecules with a centre of inversion, for which we have [9]

Upp=0805,  bupy=0,  Coprs=— (858,504 855+ 0555) , (18)

where a=a,,/3 is the mean polarizability of an isolated molecule and c=c,pp/5
is its mean hyperpolarizability.
In the present case, by Egs. (16), (17) and (18), we obtain from Egs. (10)—(13)

>N (1+Gr), (19)
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1

m\+ N N 2\ ¢
Bi=2Rz( ﬂ) <p21 qzl Pl = ( TE) acN(1+Gg), (20)

where the integral parameter [10, 11]
P
Ga= ”{g”’(rp, r)—gV(r,) gy} dr, dr, 1)

describes radial correlation of the molecules, p=N/V is the molecule number density,
while g(\(r,) and g(?(r,,r,) are the ordinary and binary correlation functions,
respectively.

The parameter Gr may be rewritten in the form [11]

Gg =4np(! {9 (rp)—1} 12, dr,,=pkTPr—1, (22)

where g(r,,) is the well-known radial correlation function and B — the isothermal
compressibility coefficient of the medium.

We shall now take account of the effect of the molecular field F, which generally
exists in a dense medium and is given for isotropically polarizable molecules by
the expansion [10]

N A
FP=— 2 a, T E,+ Z Z a,a, TETEOED — .., (23)
r=1 r=1s=1
where the tensor of dipole —dipole interaction is of the form.
T(pq)= —Tpg (3rpqa pas rpq Oup) - )]
Using the molecular field (23), we obtain from Egs. (10) and (13) in a first appro-
Ximation
Al|= 5R2< ) a*NJg, (25)
27 (2n
Bll=—— NJg, 26
i 70Rg(1>” R )
with [12]

JR___<2 Z Z Z pr)T(qS)>_.
p=14g=1r=1s=1

)

p -
=2 VJ'J' - g(z)(rp s rq) dr dr =2pfrpq6g (rpq) dl'pq (27)

denoting a parameter of radial correlation of the isotropic molecules.

The foregoing discussion proves that in the system of isotropic molecules, when
F=0, only the “Rayleigh components” 4+ and B have non-zero values How-
ever, if F#0, the anisotropic components A||=A4{;=A!l and B||=Bj; =B/ are also
non-zero.
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3.2. ANISOTROPIC MOLECULES WITH A CENTRE OF INVERSION

If the molecules of the medium are optically anisotropic and present a centre
of inversion (b,5,=0), Egs. (10—(13) yield, when (16) and (17) are recurred to,

1 /2m\*
Al = 3a(p)a(q) g)a(q) , 28
=50 (7)< 2, Z et > (8)
1 21 4 N N .
Al= z( ) (X ¥ alagh>+4 4], (29)
9R p=14=1
1+ /2m\*
Bll- jaome( 1) <2, Z,0aet—aeig >+
0 p=1gq=1
N N N " ’
b orn( Y S S Gapadal—Sagaa + 20l a;«;a;?»}, (30
p=14g=1r=
] 4
Bl— a®Pc)
1= 30R2( > {<p21 qu ﬂﬁ'}’)‘
N N 'N
+ 9-ﬁ< 21 21 21(30,"’) a® - gg>a;'g)a<'>>}+%aﬂ. (31)
p=14g=1r=

In particular, the molecules being symmetric about the z-axis, we can express
the components of the tensors a(") and ca(,‘,?v,, as follows:
alP=ad;+ax (kPP — 5,5,

AN céaﬁ +- cxc(3k£" kP —6,p) (32)

afyy =

wherein k' is the unit vector along the z-axis of the molecular system xyz attached -
to the centre of molecule p, and [13]
Az —Axx

1
a=5 (azz+2axx) ’ Ka=T’

1 2
=Tz (3czzzz + 12cxxzz + 8cxxxx) ’ Ke=_=— (3czzzz + 3cxxzz - 4cxxxx) ’ (33)
150 7 21¢

The parameters x, and x, defined here describe the anisotropy of polarizability and
hyperpolarizability of an axially symmetric molecule. Assuming for simplicity [9]
Crxzz =% (Coazz+ Cuxxx)> the parameters ¢ and x, defined above reduce to [13]

Crzzz = Cxxxx

1
C=-—= (szzz + 2cxxxx) ’ K.= 36

3
With respect to (32), the following result is obtained from Egs. (28)—(31) for
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axially symmetric molecules:

. 3 (2n a2 Ny 2

A“=10R§<A) <; ;(3cos 0,s— 1)), (39)
1 /2m\* N N

Ai=R_(2)<71t> a2<p; q;>+%AH, (35)

(36)

g 3 2m\* N N )
HES 20R <7> axa{cxc<z Y (Bcos®f,,—1)>+

p=1 q=1

N N N
AN Z [9cosb,, cosh,,cosh,,—3 (cos*8,,+ cos’ Oq,+c0526,p)+2]>},

+14kT Petld=1r
B.L:___1__<2_>4a{c<z Z>+
* 2RZ p=14=1
N N N

Z Y Z (cos® 0,,+cos” 0, +cos? 8, — 1)>} +4 B[, (37

=1g=1r=

here, 8,, denotes the angle between the axis of symmetry of molecule p and that
of molecule ¢.

On applying classical statistical mechanics, the foregoing expressions can be put
in the form

3 2w\, ,

AH=§E%(7> PEN (14T, (38)

L, 1 /2n 4 ’ T
Al:iﬁ - a*N(1+Gp)+ % A4, 39

3 /2m\* 81
B 20R2(7> ax,,N{ c S (1+3JA+J;;)} (40)
0
1 /2m\* 8 8
n =27F(7) aN{c(l +GR)+5k—Ta2x§(1 +GR+2JA+J,’4)} ?BH . (41)
0
Here, the following integral parameters have been introduced
Ja= 5’;7 f f (3¢0s*0,,— 1) gz, 1,) d1, d7, @
pz

J= 7 J.JJ(COSZ 8,,+cos? 0,,+cos?0,,— 1) gz, 1,, 1,) dr, dr, d1, (43)

Jy= ——ij@ cos 8,,cos 0,,cos0,,—3 (cos? 0,4+ cos? 0,+
+cos 0,,)+2} g%, 1,, 1) dr, dr dr, (44)
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accounting for the angular correlation of the axially symmetric molecules; g(2
(z, 7,) is the correlation function for pairs of molecules p and g having the con-
figuration 7, and 7, (containing the positional and orientational variables r and )
and g® (t,, 7., 7,) — that for triples of molecules p, g and r.

The angular correlation parameter J, given by (42) appears also in the theory
of the Kerr [14, 15] and Cotton-Mouton effects [12, 16]; its value can be determined
from those two phenomena,

If the scattering system consists of non-interacting molecules, all correlation
parameters (22) and (42)—(44) vanish and Egs. (34)—(41) hold for perfect gases.

33 MOLECULES WITHOUT CENTRE OF INVERSION

We now proceed to the discussion for the case of molecules without a centre
of inversion, for which the components of the tensor b,s, appearing in Eq. (16)
are non-zero, Thus, in addition to Egs. (30) and (31), we have the following terms:

o 2 (2N LS e p@ b® b
bBIl :105R2< > <pzl qz (41’;;?? ba?iv aI;‘B w)> s ' (45)
2 S o w p@ ® 1@ X
bBJ_ 35R2< >< 21 Zl(zbagy a%v+3ba§ﬂ bagv)> .. (46)
p=1gq :

For molecules exhibiting the axial symmetry,
b§,§3}= b(ki”)%ﬁ k;p)5y¢+kgp)(saB—Zk(p)k(p)k(p))-l-
, + by {SKPRPRD — (kP0g, + KiP0,u+ K00} (47)
so that Eqs. (45) and (46) yield

I 2 27'C 4 N N
»B||= 2( )b (Y Y {3(1+16K,~20k2) cos 0, +4(2— 5i)* cos>0,,}> , (48)

p=1g=1

2 2m\* 2 N 2 2 3
=saz\ 7 ) DT X (3011480, —103) o5 Oy +2(2 5,)° c05° 0y}, (49)

p=1g=1

bzzz -b xxz

50
3b 0

= ; (bzzz+2bxxz) H Kb=

are the mean hyperpolarizability and the anisotropy of hyperpolarizability of an
isolated molecule,
In the case of a perfect gas, Eqgs. (48) and (49) go over into

2

Bll=
*“I™105R2

21t 4 b2
—) N as- 32, +40x2) , (51)
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L2 [\, ' 2
"Bl=§§f<7 - b*N (41— 16K, +20k7) . (52)
(1]

We shall now discuss the case of molecules possessing the tetrahedral symmetry
(e.g. CH,), for which the tensor components are of the form

aap = a(saﬂ >
baﬁv = bxyz{ia(jﬁ k? + kﬂjr) +ja(kﬂ iv + iﬂ ky) + ka(iﬂjv +jﬂ iy)} ’
caﬁyd =Cxxzz aaﬂy& + (cxxxx - 3cxxzz) (ia iﬂ iy ia +jajﬂjyjd + ku kﬁ ky k&) (53)
and Egs. (12) and (13) yield, on neglecting the radial and angular correlations,
16 /2m\*
Bll= —}b:_N 54
“ 35Rg(l) bxyz s ( )
1 /2m\* 48
Bi=— (""" b2 55
L 2R§<1) {ac+35 } (55)

where ¢=(3/5) (Cxxxx+2Cxxzs) is the mean hyperpolarizability. In this case, Alj=0
and 4+ is given by Eq. (19) for Gz=0.

4. NUMERICAL EVALUATIONS AND DISCUSSION

The formulas derived above for the scattering components will now be applied
to the aim of calculating appropriate measurable quantities, such as the light scatter-
ing constant and depolarization ratio.

We define the light scattering constant S also known as Rayleigh’s ratio as follows
for the unpolarized incident beam:

S=%(1} +1”+1,,+Ij)<" +2> i (56)

where n is the refractive index of a spherical sample.
By Egs. (3) and (10) (13), the scattering constant may by expressed in the
form

S=8,+S,I+... (57)
with
+2\* R?
- | 1 0 58
Se=3(34||+ AQ( > T (58)
2 ,
S, =$(B| +Bi)<" + ) = (59)

On substituting herein Eqgs. (19) and (20) we obtain for a medium consisting of
optically isotropic molecules
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1 /21\* /n%+2\? TCZ(Vlz—l):£

1 /2m\* (n®+2\? Lfe\
S1=Z<T)( 3 )acp(1+GR)=?(~‘—l-)Sg' (61)

Eq. (60) is the Einstein—Smoluchowski—Rocard formula [17], which for Gg=0
reduces to the well-known result of Rayleigh for perfect gases.
On rewritting Eq. (57) with Egs. (60) and (61) in the form

S-S5 _1(e\, 62)
S5 2\a

we see that the measurement of the relative change in Rayleigh ratio produced by
a strong light beam of intensity 7 yields directly the value of the hyperpolarizability ¢
of an isotropic molecule.

In the case of tetrahedral molecules, with regard to (54) and (55), Eq. (62) must
be replaced by the following formula (in the absence of intermolecular interactions):

S—S5 1 (/c\ 144(b,.\?
et APSSRR ¥ PR, Wi I. 63
5% 2{(a)+35(c1)} @

We now proceed to determine the order of magnitude of the change in S for
methane, for which we have the following data [5, 9]: a=2:4x10-24 cm?3, byy.=
=0,2-10-3%¢.s.u. and ¢=2-6-10-% e.s.u. Thus, we obtain on the basis of Eq. (63)

S—S§

is

0

=0.5(1.08+0.03) - 107'2/=107%,

for I=2-10%e.s.u.
When the molecules of the medium are anisotropic and possess the axial symmetry,
we find from (58) and (59) with the help of Eqgs. (38)—(41)

13 ,/1+7,\) .

So={1+—x’ Sk, 64

o { 5K<1+GR>} o G

S,=SY?+S8¢, (65)

where
1/c\ . 17 1+J
shve — [ T Yysisdi4 4 66
L 2<a> °{ +10"“K”<1+GR)} (66)

denotes the contribution to S, resulting from the effect of optical hyperpolariz-
ability and
L (28 (L+ Gt 20 ,+ 1)+ 1T, (1 +37 ,+ T} (67)
17357 +i}:) R 4t Kq ATV 4

— that from the effect of molecular orientation.



56 S. Kielich

For carbon disulphide [13] a=8.77-10-24 cm3, x,=0,37 and c¢= 56,5-10-% ¢ s.u.,
and formulas (64)—(67) yield for r=20°C, if the anisotropy of hyperpolarizability
and the correlation of the molecules are neglected,

S - S 0

S

0o

=(2.14+22)-107*21=10"°.

It will be seen that in the case of CS, the important contribution to § arises
from the orientational molecular effect.
For molecules without a centre of inversion we have in addition to (65) the follow-
ing contribution, if Eqs. (51) and (52) are used:
24/ b\? .
SPP=—{ —) (5—4K,+5x2) Sis . (68)
35\ a
In the case of molecules with very small anisotropy (rs, 1 and x,<C0.1), we have
by (64)—(67) and (68) in good approximation:

S—So (1 /c\ 24/b\? 4ax?
= —)+—[— 24r. 69
So {2(a>+7(a>+5k’1‘} (69)
Using the following data for chloroform [12]: a=8.23-10-24cm?, K,=—0.094,
h=11.3-10"e.s.u. and ¢=20-10"*e.s.u., we obtain from (69):

S_S°=(2.3+671.7+1.6) 1107 121=10"%.
So
We thus see that the effect due to first hyperpolarizability b has an important in-
fluence on §; the two remaining contributions to S play no role in the case of CHCl;.

. In the case of non-polarized incident light the depolarization ratio of the light
scattered is defined as :

I+ It

p="" op 4D It..., (70)
I“ I+
1 1

where we have, by Egs. (10)—(13),
24| 2B{|—-(BY] +B1) Do an
0=ﬁ-— > 1= .
Al + 41 Al + 4+

D, is the usual depolarization ratio of linearly scattered light, whereas D, determines
the influence on D due to the light beam of high intensity I.

We confine the discussion of D to the case of systems consisting .of isotropic
and tetrahedral molecules (for other cases this discussion is similar to the one carried
out above for S). On substituting (19), (20), (25) and (26) into Eq. (71), we have
in good approximation for systems of isotropic interacting molecules
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6a*J
Do= ik, (72)
5(1+Gg+...)+7a"J,
35(1)(1+GR.+...)D0+9(11D0—6)ac.IR
a
D= (73)

14{5(1+Gg+...)+7a*Jp}

For carbon tetrachloride at t=20°C we have {12]: p=6.23-10“cm‘3', Br=
105-10-12 cgs., 1+G=0.026 (computed from Eq. 22), D,=0.06, Jg=1.3%
x 1043 cm=5, a=10.5-10-24 cm3 and [18] c= 28-10-% e.s.u.,, whence we have,
from the foregoing expressions,

D-D
0~ _108-10"2[=—-10"".

[o]

Thus, the non-linear change in D is now entirely negligible.
In the case of tetrahedral molecules, we obtain in addition to Eq. (73), by (54)

and (595),
(5%) (b’ y
"3\ ) 9

We see that measurements of D, can yield directly the value of the first hyper-
polarizability of the tetrahedral molecules. A formula analogous to (74) was obtained
by Andrews and Buckingham [19] for the effect of a strong static electric field on D.

From the foregoing numerical evaluations we conclude that the non-linear
change in S or D, as caused by a light beam of the high intensity of /=2-10%e.s.u.,
should be accessible to experimental detection only in the case of substances consist-
ing of strongly anisotropic molecules (e.g. CS,) or molecules without a centre of
inversion and possessing a large first hyperpolarizability b (e.g., CHCl;). In other
cases, for obtaining a measurable variation in S or D, it would be necessary to use
light of much greater intensity or to evolve a method allowing to measure very
small variations of the quantities in question. Finally, it should be stated that even
in atomic gases non-linear scattering can be considerable if the light oscillation
frequency lies near an eigen-frequency of the electronic oscillators [20].

The author wishes to thank Professor A. Piekara for his kind interest throughout
the present investigation and for his discussion of the results. The author is also
indebted to K. Flatau, M. Sci., for the English translation of this paper.
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