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LIGHT SCATTERING BY AN INTENSE LIGHT BEAM
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A classical theory of non-linear light seattering as can occur in an isotropic medium illu-
minated with a very intense ligth beam, e. g. from a laser, is developed and applied to scattering
systems consisting of molecules (i) optically isotropic or (ii) tetrahedral or (iii) axially symmetric
with a centre of inversion or (iv) axially symmetric without centre of inversion. Numerical evalu-
ations are effected and yield a non-linear variation in the depolarization ratio D, accessible to
detection in chloroform if illuminated with light of intensity not less than I = 103 e. s. u; in other
substances (e. g. CS,), variations of D will be observable on applying light of much greater
intensity.

1. Introduction

The rapid development of lasers — sources of a strongly monochromatic and coherent
light wave of great power flux — provide increasingly wide possibilities for the investiga-
tion of optical harmonics and various non-linear optical effects (see Braunstein 1962, Klein-
man 1962, Armstrong et. al. 1962, Bloembergen and Pershan 1962, Loudon 1962, Kogan
1962, Franken and Ward 1963, McKenna and Platzman 1963, Karpman 1963).

One of the non-linear effects in which non-linear interaction between light and matter
ccomes to the fore consists in the no-nlinear molecular scattering of light. Phenomenologi-
cally, the effect resides in the fact that the intensity of the light scattered by an isvtropic
medium can, in general, be a non-linear function of the intensity I, if sufficiently great,
of the incident light. Thus, I, = AI+BI*+CI3+ ..., where A determines linear Rayleigh
scattering and B, C — nonlinear light scattering. From a molecular point of view, the phys-
ical meaning of A is well-known from the linear theories of light scattering (see Cabannes
1929, Bhagavantam 1942), whereas B derives in general from the effect of optical molecular
hyperpolarizability (nonlinear polarization - -of the molecules in the strong electric field of
the light wave) and from that of optical molecular orientation (orientation of the ellipsoid
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of molecular polarizability in the electric field of the light wave). Since the days of Lord
Rayleigh, it has been known that the coefficient of linear scattering 4 contains the factor w?
with the fundamental frequency w, whereas B contains moreover a term in (2w)? resulting from
the second harmonic and € — a term in (3@)* resulting from the third. In inert gases or in
ones consisting of isotropically polarizable molecules, non-linear light scattering is due to the
effect of hyperpolarizability alone (Kielich 1961), while in gases consisting of anisotropic
molecules it arises through bot these effects, their mutual ratio depending numerically
on the kind of symmetry of the molecules and on whether the latter are strongly or weakly
hyperpolarizable. If the molecules are strongly anisotropic and possess a centre of inversion,
the predominant role is played by the effect of molecular orientation (Kielich 1963 a, Pie-
kara and Kielich 1963). Obviously, if the light oscillation frequency lies near absorption
bands, the optical hyperpolarizability effect may be predominant in all cases (Kielich 1963 b).
Either effect — that of optical hyperpolarizability and that of optical molecular orientation —
gives rise to optical birefringence in isotropic bodies (Buckingham 1956) and electro-optical
saturation in non-dipolar substances (Piekara and Kielich 1958, 1959).

Obviously the case is of greater interest when upon the scattered light produced by
a light wave of frequency w; and of low intensity there is incident another light wave of
frequency w, and of an intensity sufficiently great for the gas molecules to undergo non-
linear polarization in its electric field (Kielich 1963 b). Apart from the frequency-dependence,
the problem is to some extent analogous with the effect of an intense DC electric field on
molecular light scattering (Rocard 1928, Andrews and Buckingham 1960, Kielich 1961,
1963 a).

The present paper is intended by the author as an extension of his earlier, linear
theory of molecular light scattering (Kielich 1960) to the case of the non-linear scattering
produced in an isotropic medium by a single light beam of very great intensity. We shall first
derive a fundamental equation for the intensity of the non-linearly polarized light, whence
general formulas will be obtained for the non-linear variation of the depolarization ratio D
and of Rayleigh’s ratio S. The discussion of the latter formulas is restricted to scattering
systems of molecules that are spherically symmetrical, or tetrahedrally symmetrical, or
axially symmetrical with or without a centre of inversion. To avoid complicating the final
results, intermolecular angular correlations are neglected; albeit, in some cases, radial cor-
relations are taken into account. Neither, for simplicity, is the effect of the molecular field
on the induced electric moment considered. Such simplifications allowed to obtain the
final results in a form well-adapted. to direct numerical evaluations. The evaluations predict,
in the case of molecules having a centre of inversion, very small changes in depolarization
ratio and Rayleigh’s ratio requiring for their detection an extremely intense light beam,
whereas in the case of substances consisting of molecules without a centre of inversion,
such as e. g, chloroform, non-linear variations of D or S accessible to observation already
at an intensity of I = 10% esu of the light beam. From the results of the present theory,
investigation of non-linearly scattered light is expected to provide direct information con-
cerning the coefficients determining the non.linear polarization of the molecules under
consideration.
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2. Fundamental equation for the intensity of nonlinearly scattered light

We consider a classical system of /V identical, optically anisotropic molecules in a vo-

.o
lume V. Let the system be immersed in the oscillating electric field E = E cos wt of an
incident plane light wave. We assume that the wavelength 1 = 2ac/w of this wave is large
with respect to the distances between mutually interacting molecules and at the same time
its oscillation frequency w to be far remote from the electronic absorption band of the sub-
stance.

The oscillating electric field induces in the p-th molecule (and in all other molecules
of volume ¥) a dipole momentm®. In the case of a weak electric field, m® is linearly
dependent on E. At sufficiently high field strengths, however, the molecules experience in
addition to linear polarization, a nonlinear polarization, and the a-component of m® may
be expressed in the form (see Appendix A)

o 1 , o o
| m® = o) Ejcos wt + T (B2 +B%), cos 2wt) EE, +

1 , o o o )
+ % (3y$8)s cos wt+y,8% cos 3wt) EgE,E;+..., (8h)]

where al) is the optical polarizability tensor of the p-th isolated molecule and 8%, and
¥%),s ... are the tensors of its hyperpolarizability ‘describing departures from the linear
polarization law (see Born 1933 and Buckingham and Pople 1955). In the case of optically
inactive substances and throughout spectral ranges widely remote from those in which
absorption appears, the tensors Oups Bapy a0d V4,5 are symmetric in all suffixes and real.
The frequency-dependence of the above mentioned tensors is discussed in Appendix A.
Suppose 1 is a unit vector describing the direction of the oscillations in the scattered
light observed at considerable distances R, from the centre of volume V; obviously, n is
perpendicular to the observation vector R,. The n-component of the intensity of the light-
scattered is given, in the electric dipole approximation, by '

1 =t
In = m(MuMz nan1>E, (2)
wherein
‘N
M =3 m® @)
p=1

is the total dipole moment induced in the systern of volume ¥ by the electric field E of the
incident light wave.

" The horizontal line ¢ in Eq. (2) denotes the time average and the brackets { Dg
stand for the classical statistical average in the presence of the electric field E at equili-
brium of the system at temperature T,

By — f O(7,E) exp {— U(]:}E)}dr,

fexp {—— U_(Z’TE—)} dr

(4)
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with U(z, E) denoting the total potential energy of the system when its molecules are at
configuration 7_and when the electric field is E.

On expanding the right hand side of Eq. (2) in a power series in the amplitude E
we obtain by the definition of (4)

I n = Iatnanr’ (5)

where I, is the light scattering tensor of the form

1
2
I, = S0R: ( ) {SE E.Fis + (3601E + BB, ) Fanis+
+ 5 L 178 B Gis (3002 +5 Bl Ganie] i’2+...} . ©6)

Here, the factors (Kielich 1960)

t

d M M, .
Fy = ( £ <oapya~2aaﬂava)>, (7)
O\ 9,0k,
".._‘Tt
1 [o2M,M;
Fanis = 57 <—o"’:‘é'(55aﬁﬁyo—wv6)> ) ®)
O \JE,DE, '

characterize the isotropic and anisotropic linear light scattering, respectively, and

Gis =

t
L( MM,

(Uaﬁvden*46¢ﬁaydm)>
aEya E a@E E)E

IR =+

2 , 2
_ 2 <9 MﬂMﬂ {3 f Uo (G¢ﬁ76817~4‘6¢»30‘ydm) -
L L,

_< azﬁ; >(7aaﬁy5_2o(s,,ﬂaw) as,,}> ©)

L (2
208 \of o b0 0 F,

Ganis =

(70ap0 867~ Oapyssn) > —

et
2
1 (9 M, Mg {3 o U — (70up0ysen— Oapysen) —

o%T \ of ok, U 2k0F,
2T |
—7 < > (55,,3576—0',,5,,5) 6 }> (10)
, obok,

— that of nonlinear light scattering.
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In the above expressions we have introduced the following tensors:
Oagys = OagByatOasBpa+Oasdpys
Oapysen = 6«;3076”1 + 6¢700em9 + 6adaenﬂv + 6ze°'nﬂ?6 + 6an°'ﬁwe’ (11)

with 0, denoting the unit tensor and the brackets ( ) — the statistical average at zero
“electric field, as resulting from (4) for E = 0.

3. Depolarization ratio and Rayleigh’s ratio

Let us now assume that the reference system XYZ is attached to the centre of the
scattering volume V and the system X'Y’Z’ — to the point of observation of the scattered
light. Consider a primary light beam travelling in the Y-axis direction with electric vector
oscillating in the XZ-plane at an angle v to the plane of observation (XY-plane); thus,
in the XYZ system

E = (xcosyp+zsiny) E, (12)

where @, Y and 2 are unit vectors in the X, Y and Z directions, respectively. The light scattered
is observed in the X Y-plane at the angle & with respect to the direction of -incidence (Y-axis).

The intensity of the scattered components oscillating parallel and perpendicular to
the plane of observation are defined as follows in the X'Y’Z’ system:

Iy = Lax,, I =Laz.

Substituting herein the scattering tensor of Eq. (6) and using the fact that
&' =a cos ® —y sin & and 2" = 2, we obtain by Eq. (12)

¢
Iy = 745—112'2" (%) {15 cos? g cos® 9Fi+ (3 +cos? y cos? ) Fanse]I +
{i]
+ —415 [7 cos? y cos? BG4 (345 cos? y cos? F) Ganis] I*+ }’ 9
. ]_ w 4 Y s 9
I = B\ [5 sin® pFis+(3 + sin? y) Fonis] [ +
+ 115 [7 sin? 9Gis+(3+5 sin? ) Ganis) I2+"'}’ (14)

where I = } E°26= E_ztdenotes the incident light intensity.

In Eqs (13) and (14) the first term proportional to I describe the linear light scattering
and the second term with 12 — the additional non-linear scattering produced by a strong
light beam.

By Egs (13) and (14), the depolarization ratio of the light scattered D = I /I, is there-
fore given by

D = Dy+D, I't+..., ' (15)
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where

D — 5 cos? y cos? FF;;+(3 + cos? p cos? F) Fpye 16
0 5 sin2 ’l/JF';s‘f'(g + sin? 1/)) Fanis ( )

is the depolarization ratio of linearly scattered light, and

D — 1 J7cos? y cos? & Gis+(3+5 cos? y cos? ) Ganis
17 4 5sin? y Fis+ (3 +sin2 ) Fanis

7 sin2 Y Gis+(3 ‘|—5 sin2 1/)) Ganis 17
0 -5 sin2 g Fig+(3+sin2 ) Fo, | an

determined the nonlinear influence on D due to the light beam of high intensity I.
If, in particular, the electric vector of the incident light beam oscillates in the plane
of observation (y = 0°), Eqs (16) and (17) become

5 cos? 9 Fis+(3 + cos? ) Fams

I
Dy — 6 (18)
Dl = ﬁ {(7Gis+5Ganis) €052 & -+3(1—Dy) Gaishs (19)
anis

For incident light with plane of oscillation perpendicular to the plane of observation
{(y = 90°), Eqgs (16) and (17) reduce to

3Fan;
o —oams
Do SF; is + 4F, anis ’ (20)
Df‘ _ (3"‘8D0) Ganis_7D0Gis ) (21)

42(5F;5+4F i)
In the case when the incident light is nonpolarized, cos?y and sin?y have to be replaced

by % in Eqs (16) and (17), yielding

5 cos? 9Fjs+ (6 + cos? ) Fams

Dy = 5T+ Fani @2
D — (6+5 COS2 19——-].11)8) Ganis+7(0052 ﬁ—Dg) Gis (23)
e 42(5Fs+7 Fanis) ;

Analogously to Eq. (15), the Rayleigh ratio (or light scattering constant) can be express-
ed as follows:

_ @+ RE (n2+2\® :
S = 7T 3 = SO+SII{—..., (29
where, by Eqs (13) and (14), we have in general
2
So = AFIV (w ) (n +2> {5(1—cos? y sin? #) Fis+(7—cos? p sin? H)Fuge},  (25) -

I n24-2
S; = @W( ) ( 3 ) {7(1—cos? y sin2 ) Gjs+(11—5 cos? y sin? ﬁ)Gams} (26)

with n denoting the refractive index of a spherical sample of volume V.
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' For incident light with oscillations in the plane of observation, we obtain from Eqs (25)
and (26)

l |o né+ .
S = 45V( ) ( 3 ) {5 cos? 1917’,,;+(6+cos2 &) Fanis}s 27)
oL (2} (22 (7 cos0Gig+ (645 €052 9) Canis) (28)
1= 18907 \ ¢ 3 co is €os anis§>
whereas for oscillations perpendicular to the plane of observation.
. i ) n?+2
L
S I e RS @)
1l (o n?4-2
L = =
S 1890V(c) ( 3 ) (7Gis+11Gypis). | (30)
When the primary beam is nonpolarized, Eqs (25) and (26) lead to the results
2
Sn = 9%,(‘“) (” +2) {5(1+ cos? 9)Fig+(13+ cos? 9) Faus), 31)
Sy = —1—' Y +2 {T(1+ cos? 9) Gy +(17+5 052 #) Gonis}. (32)
17 37807 i %) Frends

4. Application to special cases and discussion

/

Using the fact that

2

g (cos wt)* = —nw?{n cos” wt—(n—1) cos" 2 wt},
we obtain by Eq. (1)
@ = ( of) 5 VGl + ) B cos wt—
1 &) 2 O 1 @ B S
by (2w)2 asy Eg B,y cos 208 — ) (Bw)2yasys B Ey Es cos 3 wt —... (33)

We see that the electric dipole induced in the molecule by a strong optical field radiates
in the first approximation with the fundamental frequency w, whereas in further approxi-
mations — with the second harmonic frequency 2w and third harmonic frequency 3w.

By Egs (3) and (33) and on time-everaging

(cosNw)? = (cos 2@‘)2! — (cos Bwr)? =},

. 3 T
cos wt cos 2wt = cos wt cos 3wt = 0, (34)
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[}
we have with the accuracy to E®

——t 1 N N 1 ) °
M, M, = 3 Z Z { wt [asg,) ol + ry (o« yfg‘{,lﬂ + y2), aff) E, E,+
=1 ¢g=1 o

1 o 0o o o o
MyavmyéqgoxEsEn G'Ex+"‘] 16 @Qpﬂawe q E, 'l+

1 , , o o o o o
+ 576 (300)"‘'y‘,c(f,g7 yﬁ%‘QZE E,EsE, + } E, Ea- (35)

The terms with w4 describe the Raylelgh light scattering (linear and nonlinear in the
hght intensity [ = 1 EZ) while the terms contalmng (2w)* and (3w)* correspond to the
nonlinear second harmonlc and third-harmonic scattered radiation, respectively.

In the same approximation as that used in (1), the time-averaged potential energy of
system, is:

: 1 o :
Ulr, B) = U(z, 0) — Z o) EuEﬁ (36)
=1
where U(z, 0) is the total potential energy of the system in the absence of an electric field.
Substitution of Eq. (35) and Eq. (36) into Egs (7)—(10) leads to-

By = (3 3 oai), | (37)
=1 g=1
1 N
Foie = 5 (Z Z (3“@)“(4)_“@)a<q))> (38)
p=1 g=1
1 N N
Cu= (3 PIPIRE! “‘”yfs%’w+mpﬁa<‘”)+8(§ﬂ 6%, 2g DB
=1 ¢=1
4 N N N
+ o Z Z Z (1D Boag)—aDal) + o (BaPag) — “%>a<yry>)}>, ©9)
=1 g=1 r=1
1 N N
Cuia = (33 Y 0020, —o 218 +31 08 ) +
p=1 g=1 .

N N N
4
SRS~ PN e Y Y Yl —

=1 g=1 r=1

—3(a@aal) + aBaDal) + aBafal)) + Zac,(,ffacg‘gac(')}) (40)
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Further simplification of the foregoing factors can be achieved by assuming a partic-
ular type of symmetry in the scattering molecules (see, Appendix B). This will be now
effected for the cases most commonly occurring.

4.1 Optically isotropic molecules or atoms

In the case of isotropically polarizable molecules the molecular factors of anisotropic
light scattering (38) and (40) vanish and those of isotropic light scattering (37) and (39)
assume the following simpler form .

9<Z Z} aPa@y = 9a2N(1+Gg), 4l)
=1g=1
135 /v v
Gy = -2—<Z (oc(P)y(a)-}-y(P)“(q))) = 135ayN(1+Gg), (42)
p=1 ¢=1

where o« = } @, and y = %y, are the mean polarizability and hyperpolarizability,

respectively.
In the above formulas the Zernike-Prins (1927) parameter has been introduced

Gg = 4mo f {g(ry)—1} r2dryy = 0kTPr—1, (43)

describing the radial correlation of the molecules; ¢ = N/V is the molecule number density,
g(r,,) — the radial correlation function for molecules p and ¢ separated by a distance Togo
and By — the isothermal compressibility coefficient of the medium.
Substitution of (41) and (42) into Eqs (31) and (32) yields

4/ 3 2 2(n2 —_ 1)2
Sg=l(9) (n +2) 20(1+Gg) (1+cos? 9) =ﬂfﬂ—kTﬂT(1+cosz 9), (44)

2 \¢c 3 21

o |
St=5 (%) St (45)

Eq. (44) is the Einstein-Smoluchowski-Rocard formula which for Gz = 0 reduces to

the well-known result of Rayleigh (¢f. Cabannes 1929).
By (44) and (45), the Rayleigh ratio can be rewritten in the form

—S5_1 (i) L (46)

S" 2\

Thus, investigation of the relative change in S produced by a strong light beam of intensity
I makes possible to determine directly the value of the hyperpolarizability y of an isotropic

molecule.
We shall now evaluate the change in S for methane. Using the data (Buckingham and

Pople 1955) & = 2.4 X 1024 cm? and, y = 2.6x107% e. s. u., we have by (46) (5"—S5)/Sg
=0.5x10-12 I and we see that the change of S is very small being of the order of 10-® for
a light beam of the high intensity of I = 2X10% e.s. u.
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4.2 Molecules of tetrahedral symmetry

For molecules possessing the tetrahedral symmetry (e. g. CHy), F,;;; = 0 and F, is
again given by (41), whereas G and G,;, are of the form (if radial correlation only exists
in the system)

G. — ON{I5ay(1+ G —166%s}, (47)
Ga.nis = 288N, ﬂfzs’ ( (4‘8)
and we have by Eqs (22) and (23)
32 [1—cos2®) [ Piss\’
I J— 2 n o el
Di = cos?®, Dj 35 < 15 Ca ) ( B (49)

If the scattered, light is observed perpendicularly to the direction of incidence (¥ = 90°),
the above expressions yield for G = 0

32 (B |
D 35( 2)[ | (50)

In the case of carbon tetrachloride we have (Kielich 1962) o« = 10.5x10-% cm?,
0 = 6.23%x1021 cm™3 and f; = 105x 10712 cgs. Thus, calculating the parameter Gy from
Eq. (43) and assuming f55 = 3X 1073 e. s. u., we obtain on the basis of (49), for 4 = 90°
D" =3x10"12I.

4.3 Axially symmetric molecules with a centre of inversion

Assuming that the molecules are axially symmetric and possess a centre of inversion
we obtain from Eqs (37)—(40) in the absence of angular correlation of the molecules of
the scattering system

F, =922 N(1+Gg), Fyy = 9222 N. (51)

Gis = 27aN <5’y+ % 052}6,) (1+Gg), (52)
27 4

Ganis = 7 (XMGN <77”7 + ﬁ“zzi) ° (53)

where %, = (33—;1)/3« is the anisotropy of polarizability of the axially symmetric mole-
cule and x, = 2(3¥33s3 +3¥118s—4Y1111)/21y — its anisotropy of hyperpolarizability.

Using the above expressions and assuming for simplicity that the incident beam is
polarized with oscillations in the plane of observation and that the scattered light is observed
at an angle of ¢ = 90°, we obtain by Egs (27) and (28)

SI—S§ 1 [yn,  dax,
ST T 2{% + Tt (4
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where
6 [w\* [n2+2\? 6m2(n2—1)2
== {= 2,2 0 2
S 5 (c) ( 3 > o®xzp 57, %a. (55)

The first term in Eq. (54) describes the contribution to S resulting from the effect of
optical hyperpolarizability and the second term — that from the effect of molecular optical
orientation.

We see that Eq. (55) provides a simple method of measuring the value of the polariza-
bility anisotropy x,, whereas Eq. (54) yields the value of the hyperpolarizability anisotropy
%, of the molecule.

We now proceed to determine the order of magnitude of the change S for carbon
disulphide, for which we have the following data (Buckingham and Raab 1957): «
=8.6x10"#cm?, x, = 0.25 and y = 54.4X107% e.s. u. Assuming %, = x, (the aniso-
tropy of hyperpolarizability of the CS, molecule is not known), we obtain from (54) for

= 300°K: (S!'—S)/Sil = (3.1+138.7)x10-22I = 3107 for I =2x10%e.s. u.

4.4 Axially symmetric molecules without centre of inversion

If the axially symmetric molecules have no centre of inversion, we obtain in addition to
Eqs (52) and (53), on neglecting the molecular correlations,

= 12/32N@¢1+16xﬂ—20x5), (56)
Gmis = 1282N(19—32x; + 40x3), (57)

where 8 = (B333+2113)/3 and 2, = (Byss—f115)/3p are the mean hyperpolarizability and
the anisotropy of hyperpolarizability of the molecule, respectively.

From (22) and (23), for & = 90°, we find by Eqs (61)—(53) with Gg = 0 and (56)—(57)
D*—Dz 1

— ' -1 8 ﬁ ’ 3
) S ﬂ{( ) [10%;"Dy+(11D,—6) xy]-l— (057“') [7(41 +

+16%3—20x) Dy+ (11Dy—6) (19— 32xﬁ+40%ﬁ)]+ T [28Dy+ (11D, 6)x,,]} (58}

where Dy = 6%2/(5+7x2) is the usual depolarization ratio of a gas (Cabannes 1929).

For chloroform we have (Bhagavantam 1942)- Dy = 1.8x 102, (Landolt-Bérnstein.
1951) & = 8.23x 1072 em?, #, =—0.094 and (Kielich 1962) B =11.3x10"® es.u.,
= —0.074 (the values of y and %, are not known for the CHCl; molecule), so that Eq. (58)-
yields (D"—Dg)/Dg = (134—0.1)x 10710 I. It will be seen that in the case of CHCI, the
important contribution to D" arises from the first hyperpolarizability 8, whereas the contri--
bution from the orientational molecular effect is very small and so plays practically no part
at all here. From the above evaluation for CHCI; the change in D is of 104 for I = 10%e.s.u.
and ought to be conveniently accessible to measurement, since as estimated by Andrews.
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and Buckingham (1960) changes of 10% in the depolarization ratio of gaseous systems

should be detectable with a photomultiplier tube.
The author wishes to thank Professor A. Piekara for his kind interest in the present

investigation and for his valuable discussions of the results.

APPENDIX A
Frequency-dependence of the hyperpolarizability tensors
Suppose the molecule to be subjected to perturbations by an oscillating electric field

E =ﬁ cos wt, so that its total Hamiltonian is
1
H=Hy— 5 (n- E*+p-E), (A1)

with H, denoting the Hamiltonian of the nonperturbated molecule having the electric dipole

o, o .

moment operator g and Et = E¢* and E- = Ee™*,
= The «-component of the oscillating dipole moment of the molecule in a ground state g
can be expanded, to within the third-order time-dependent perturbation calculus, as follows:

My = %} {(5ng ag) + a;l)*‘ 5kg) +( 6ng “1(&2) + a;l)* ag) + aﬁ?* 5kg) +
+ (5,@0';3) + (ISD* ag)_l_ 01512)* ag) 4 a,;S)*. 6kg)‘+ } ot eiwnkt’ . (A.Z)

where the coefficients al, a(®, ... are functions of the time and can be calculated to the
order s+1 by integrating the following differential equation:

ihay ™0 = — % Z (Wt * B+ o - B af eionit, (A.3)
k

Here g, = f Pah,dT is the matrix element of the electric dipole moment associated with
the transition n—>k between the quantum states n and & whose nonperturbated wave functions
are v, and v, respectively; w,, = w,—w, is the Bohr frequency corresponding to the
transition n—>k.

With the foregoing expressions m, miay be written in the form of expansion (1), with
the polarizability tensor

2 _ _1_ Yagn(ong - EE) _ Hang(Pgn * ET)|
a5 cos wt = T Z { (O£ @) (©Opn T ) (A4)
and the following hyperpolarizability tensors: |
pops 1 Page(an * BE) (Pong - ET)
PasvEsly = 55 Z { wrgtomg F ) +

nk

+ Hank(Ung - EF) (g E7) Hhang(n - ET) (P'kg'Ei)} ,

(g F ) (w08, F ) ng(@rg T @)
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o o _ i' ,uzgk(l’-kn 'Ei) (F'ng : Ei)
Basy EpE, cos 2wt = he g { (wrg£2m) (wngEw)

4 Pttt B) (g * B) ,/izwjﬂnz'EfL(E}s'E*)} :

(wng F ) (g L o) (wng 12&)) (wrg t )

o o o _ i (vrt - EF) (pin * EF) (pong - ET)
VaprobpEyEgcos wt = 45 ; {'u“gk [ (wrg ) (g F ) +

-+

(b EE) (i ET) (pong - B*) (2" EF) (pan * ET) (g E*)]
(wrg Lw)op(wp o) (wkg¥w)_ (0T 20) (05 T o)

N [(ung BT (- B*) (g - B5) | (g BY) (- B) (g - BT)
e (ng L) (0pg+20) (W w) (Wng +00) wOrg(e0ss T w)

(g - BE) (i B*) (g - BF) | (pag - B*) (s * E7) (s - E7)

T T )o@, F0) | (k£ 0) (00 - 200) (g £ )
+ (g~ B) (o - B7) (g - B%) | (tag * B7) (o B7) (s Ei)] +
(wkgi“_’) Wiy F @) (Wre F @) Wpe(F w)

+ [(llnk'E:F) (- E¥) (b - E) _}_(P-nk'E;) (pas - E*) (g - EF)
Hane | g £ 0) org (035 T ) (g £ 0) g0y £ 0)

(ne - ET) (Ws - E=) (g - Ei)]}
(0ngF ) (2 F20) (05 F @) 1)’

+

Magh(Wrr * BE) (pin * EF) (o - EF)

, o o o . 3
Vesrolplhyls cos 3t = 3 ; { (kg 300 (001 £200) (g £0)

(Ung - BE) (- E*) (g - BE) | (pag " ET) (o - E7) (g - ET)
T e [(w»ﬁ ) (wpg£20) (@t o) T (kg T ©) (g £20) (wtgi@)] *

. Hans(ts* BT (- %) (g - E”F)}, (A.5)

(@ng+30) (wpg+2w) (W + )
where, for brevity, the notation

E+ + E-
= E + , elc. (A. 6)
Wpg+ W Oy + @  Opg— @

is used. :

For the general case of two or three light waves at different frequencies the permutation
symmetry relations and the frequency dependence of the tensors f,4,and y,4,s are developed
and discussed by Armstrong et al. (1962). ,
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APPENDIX B

Polarizability and hyperpolarizability tensors for spherical,
tetrahedral and axially symmetric molecules

For molecules possessing the spherical symmetry, the tensors g, /3,,,,37 and. y,4,5 assume
the form (Buckingham and Stephen 1957).

1
Uap = %Dap, Bagy =0,  Vapys = 3 YOapyss (B.1)

where the tensor o, is defined by (11).
In the case of molecules possessing the tetrahedral symmetry we have

“Gls = aﬁuﬂ ,
ﬂaﬂy = /3123 {iu(jﬁky + kﬁj-y) + jz(kﬂiy + iﬂk'y) + ku(iﬁjy + jﬁiy)},
Yapys = V1133 Oapyst+ (V1111 —3V1100) Gpipi, s+ Jufolyl s+ kokgkoks)s (B.2)

with ¢, j and k denoting unit vectors along the axes 1, 2 and 3 of the molecular reference
system. »

For the case of molecules symmetric with respect to the molecular z-axis, the tensor
components of s, fus, and Y, can be expressed as follows:

Xop = A(1—12,) 005+ S feohs
Busy = BUL—2,)(B 5k, + 85, kot 8,505~ 2 Figk,) + 3fgh figh,,
Vapys = —;—'l'y (1—2,) Gggys+ % vt (Bgp ki fiat O highis+
F Bgsligh, + Op,fipks+ Opakhe,+ O, 4ka0) +
+ 3}5_ (Passs— 61130+ 1110 {35k Jogh oy —5(O g g+ O, sy +
B kgl O hist Bpshigh, + 0,5k dig) + Gapsh- (B.3)
On applying the above expressions we obtain for axially symmetric molecules
325y — oy = 9a2(3(h, k1),
3aBy D, —aly@ = ; akay%y{3(k - k)2—1},
30,@)“(«1)“«) 3 (aDoDa) + aBaDal) + af)a Do) -+
+ 20@aDal) = 2703459k, - k), - kK, - k,)—
—3[(k, - k)*+ (k- )+ (K, - ,)*] + 2},
BELZ, = 9B, - K ,)*—BAL—rg)(L+ 5u5) (5K, - e )2—3}(k, k),
BELBD, = 9Bk, - k), - (B4

where k, is the unit vector along the axis of symmetry of molecule p.
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