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The possibilities are discussed of deriving information on the value of the octopole moment
of tetrahedral molecules from the investigation of the second virial coefficients of the equation
of state for a gas or gas mixture, the dielectric polarization, the molecular refraction, the mole-
cular scattering of light and the molecular Kerr and Cotton-Mouton constants. The respective
coefficients are computed for the general case of molecules of different kinds and the results
contain various contributions from molecular interactions of the octopole and mixed types
(e.g. octopole-dipole, octopole-quadrupole etc.). Some of the expressions derived contain,
in addition to the octopole moment £, the hyperpolarizabilities 8, y and &, which it will be pos-
sible to determine once the appropriate experimental data become available. Numerical evaluation
for methane leads to reasonable values of the octopole moment for the CH, molecule.

1. Introduction

Molecules of the CR, type, where R is an atom (e.g. H, Cl, F, ]} or a not very large
group of atoms (CHj, NO,), possess the tetrahedral symmetry. They can be said to have
the form of a regular tetrahedron whose corners are occupied by the four atoms R whereas
the carbon atom is situated at its centre, being tied to the atoms R by single bonds. Tetra-
hedral molecules present neither a dipole nor a quadrupole electric moment; the first mo-
ment they are able to present is octopolar and is given, quite generally, by the tensor £2
wherein «, #, ¥ = x, y, 2. Of the 27 components of £,
components 2, = remain in the case of the tetrahedral symmetry, the axes w, y, z being
oriented parallel 1o the sides of the cube having atoms R in four of its corners.

Although the octopole moments of molecules can be computed directly, this is by no

afy?
in the general case, only the 6 equal

means a practicable procedure in all cases; this is why indirect information on their values,
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to be gleaned from the knowledge of various experimentally measurable quantities, is of
great importance. In the first place, such information is to be derived from effects wherein
molecular interactions of the octopole kind are pronouncedly apparent. Thus, if Q) be a quanti-
ty characterizing appropriately chosen measurable variables of a real gas of molar volume V,
the following virial expansion can be written according to Buckingham and Pople [1]:

Q=AQ+B—VQ—!—%+..., 1)
where A is the first virial coefficient of the quantity () describing the properties of a gas
consisting of non-interacting molecules (perfect gas). The second virial coefficient By,
accounts for pairwise interaction; the third and subsequent coefficients are due to multiple
interactions, and will not be dealt with here. Thus, the experimentally measured deviations
of the respective properties of a real gas from those of the perfect gas are due to molecular
interactions and, in the range of not excessively high pressures, are essentially described by By,

The expansion of Eq. (1) can be used for investigating the second virial coefficients By,
of measurable properties of gases consisting of tetrahedral molecules; hence, in turn, infor-
mation can be obtained concerning the octopole moments of the latter. The first to do this
were Johnston, Oudemans and Cole [2], who computed theoretically and measured experi-
mentally the second dielectric virial coefficient By, for methane and determined the octopole
moment of the CH, molecule. Similar information can also be derived from the investigation
of the molecular dielectric polarization of gas mixtures consisting of unlike tetrahedral
molecules [3]. In checking the information obtained in dielectric investigation, one can recur
to molecular refraction measurements, applying Buckingham’s theory [4] of the second
refractivity virial coefficient By to gases consisting of tetrahedral molecules or to mixtures
of such gases [3, 5]. Moreover, molecular interactions are apparent in the effect of molecular
light scattering in real gases [6, 7, 8], in Kerr’s effect [9] and in that of Cotton-Mouton [10].
Research on the second virial coefficient of the last two effects in the case of tetrahedral
molecules can provide additional information about their octopole moments and, moreover,
about their hyperpolarizabilities.

It is a well-known fact that investigation of the second virial coefficient B(T) appearing
in the equation of state of real gases provides a sure and unfailing method of collecting
information on the nature and magnitude of the forces acting between the molecules, and
on various molecular parameters. Accordingly, the present paper brings the calculation of
certain contributions to B%) from interactions of the octopole-octopole, octopole-induced
dipole, octopole-quadrupole and octopole-dipole types. The. respective expressions thus
derived allow to evaluate numerically the octopole moment of a tetrahedral molecule with
relative ease, as will be demonstrated in the case of the CH, molecule. Moreover, we give
a discussion of the second virial coefficients of dielectric polarization, molecular refraction,
molecular light scattering and the molecular constants of Kerr and Cotton-Mouton; it is
found that additional information concerning the octopole moment and hyperpolarizabilities
of tetrahedral molecules can be obtained along these lines. All computations are carried
out for molecules of various species so as to be applicable to mixtures of real gases.
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2. Contributions of the octopole and mixed types to the second virial coefficient B(T)

In the case of central forces, when the potential energy of two molecules p and ¢ depends
‘solely on the distance r,, between them, the second virial coefficient of the equation of state
for real gases is given as follows [11]:

oo Uyy(Tpg)

Blw = —2aN [fe " 112 dips @)
0

herein, u(r,,) is the potential energy of central interaction between the molecule p of species
i and the molecule ¢ of species j; N is Avogadro’s number, & — Boltzmann’s constant and
T — the absolute temperature.

In order to compute effectively the quantity BY) ., we have to know the law according to

which the forces of attraction and repulsion between the molecules vary with the distance Togr
The most commonly employed central forces’ potential is that of Lennard-Jones — partic-

ularly in its very convenient special form

5\ 12 0\ 8
wij(rpg) = 4ej {(r—’) — (r—’) }, 3)
rq pgq

where ¢; and o; have the dimensions of an energy and distance, respectively, and are
constants characteristic of the species of the interacting molecules. With (3), Eq. (2) yields

i 2
Bgér)m =— _”N U?jF (ry) = biF(y i) s 4)

where F(yu) is a function tabulated in the monograph by Hirschfelder et al. [11]; Yii
= 2(e;/kT)E.

In the case of a gas consisting of more complex molecules, the potential u;(r,,) contains
additionally the energy of non-central interaction vy(r,,, ®,, ®,) dependent on the distance

and on the orientation of the molecules, w, and w, lf we assume with Pople [12] that v(r,,,

w,, w,) constitutes a perturbation of u(r,,), the quantity B defined by (2) will contain

> centr

additional contributions

i Ny 1 1\" .,
Bl('l‘c’)ix-centr = E Z ? (_ Hw) <'Uij>ii (5)
n=1

resulting from the presence of non-central forces (angular or tensorial), with

U4yrpg)
kT

Gy = JS T {0i(rpg 09, wg) )€
’ J[ darpdder,
For the case of dipolar or quadrupolar gases, contributions (5) are discussed in a number

of papers [11, 12, 13, 14] and, for mixtures of polar gases, in [15]; here, we shall compute
them for octopolar gases, in particular for ones consisting of tetrahedral molecules or their

Ay dwydo, ' (6)

mixtures with other gases.
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Mixture of tetrahedral molecules. Consider a real gas consisting of unlike molecules
presenting a permanent octopole moment given by the tensor £,,, and polarizability given
by the tensor ;. The potential energy of tensorial interaction of two of these molecules can
be expressed as follows [10]:

(m) (pq) _Q(qj)

Vij(Tpg> Wps g) = 225 Qe Tapysen2den —
1 . : 7 :
- 450 (“%)Q;qggg%; + “(q])'Q%»)Qr;%D Tgcpyqd)s Tgi]%)x T e (7)

herein, the first term accounts for the energy of octopole-octopole interaction and the sec-
ond — for octopole-induced dipole interaction. The tensors oc%) and Q%‘; are those of
the p-th molecule of species i.

On substituting (7) in Eq. (5), we obtain the two principal contributions to the second
virial coefficient resulting, respectively, from octopole-induced dipole and octopole-octopole

interaction:
ngop-ind-dip = SkT { Q(é‘)w fz%)v“' “j-Qgﬁ)W g/-??y}< i )
(&) 132N @) o) o) o) ¢,=14
Boctop-octop = - 17'W QaﬂyQuﬁy den den <rpq >ij, (9)

where a; = } «) is the mean polarizability of the isolated molecule of species i.
For tetrahedral molecules, the tensor of the octopole moment £, is expressed as

follows:
‘Qaﬁy = ‘Qxyz{ia(jﬂkv + jykﬂ) +joz(kﬂiy + k'yiﬁ) + ka(iﬂjy + iyjﬂ)}’ (10)

wherein 14, j, k are unit vectors along the axes x, y, z of the system of reference attached
to the molecule. Since here 2_, 2 ., = 602 = 602, the expressions of (8) and (9) become

afy=“aly xyz
ngop-ind.dip = — _T {aiQJZ + Q? “j} <’p—qm>ij, (11
i 4752N -
Bgézop-octop = 175k2 T2 ‘QZ'Qz qu4>1] (12)

Eq. (12) is analogous to the result derived by Parsonage and Scott [16] for the free energy
of a liquid mixture.

Assuming, in order to simplify our computations, that the energy of central interaction
of the tetrahedral molecules is given by the Lennard-Jones potential in the form (3), we have
by Eqgs. (11) and (12)

3b; ) 2 QF
- haid 13
Boctop-md dip 1 Oy ) { ( U ) (0',]3:] + 0_7 ey (\ 0',, 10(}’1]) ( )

. 297 AW E
Bf)ézop-octop = — 55~ bij <7—) ( 7 ) 14(}1})7 (14')

350 ole; ohEif

where the H, are functions introduced by Pople [12] and tabulated in [14].
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Mixture of an atomic gas and of one consisting of tetrahedral molecules. The results
derived above can be applied immediately to the case of a two-component gas wherein
the one component consists of atoms with polarizability ; and the other consists of tetra-
hedral molecules with polarizability &, and octopole moment £2,. If x; and x, denote the
molar fractions of the components, the second virial coefficient of the mixture is given by

B, — xfB(ll)—i- 2, %y B1D - xgg(zz), ‘f(lS)

where the virial coefficients BY and B® of the pure components and B®® accounting

for interaction between an atom and a tetrahedral molecule, by (4), (13) and (14), are of the
form

B — by F(y11)s (16)

B = b, {F 3 (u) (&%) g 17
= D19 (3’12)—10-}‘%; 5?—2 812—81; 10 (12) (5 (17)

3 03 a. 99 .Q2
(22) — 2 o
B by {F(hz) 5y22 (022822) [(022) Hyg(y) + =5 70 y22 (02 822) H14(y22)]} (18)

Mixture of quadrupolar molecules and tetrahedral molecules. We shall now consider a
mixture whose one component is a-gas of quadrupolar molecules and the other —a gas consisting
of octopolar molecules. In the present case, the coefficient BV is that of the quadrupolar
component and is to be found in [12, 14, 15], whilst B®?, relating to the tetrahedral mole-
cules, is the same as in Eq. (18). Thus, the only quantity remaining to be computed is B%%,
the coefficient accounting for the interaction between a quadrupolar and an octopolar mo-
lecule as described (neglecting anisotropy of the forces of dispersion) by the potential

1) (a2 1 )00 0L
- ZE; @(P )_Q‘%B) (13%5 18 (4 )@(P )@(P )T(PII)T(PQ) (19)
Herein, the first term represents the energy of interaction between the quadrupole @%1) of
the p-th molecule of species 1 and the octopole .Q(qz) of the g-th molecule of species 2, whereas
the second term represents the energy of 1nteract10n between the quadrupole @(Pl) and

the dipole moment induced by this quadrupole in the octopolar molecule.
By (19), Eq. (5) yields

N -
Biocents = — 57 0563 {oc2<rpq Sut g SAORC >} (20)

In particular, if the quadrupolar molecules present the axial symmetry i.e. if the tensor
O, is of the form [17]
Oup = '%‘@(3kakﬁ“‘6uﬁ), 1)

and if the octopolar molecules are tetrahedral with octopole moment given by Eq. (10),
we have by (20)

363N -
Bl('x](-)zrz-centr = - 4~kT {“2< >12 SkT <rP412>12} ’ (22)
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wherein @; = 6 is the quadrupolar moment of a molecule symmetric with respect to the
z-axis of the molecular coordinate system.

For the case of a 6-12 Lennard-Jones potential, Eq. (22) accounting for interaction
between the quadrupolar and the tetrahedral molecule assumes the form

+ 3b 62 6 022
B£110212-centr =2 (“ﬁl*) {(0 )Hs(ym) + = 5 312 (_7 : ) le(}’m)}- 23)
12 2¢

T 32y3, \0hatrs Gi2€qs
Mixture of dipolar molecules and tetrahedral molecules. We now proceed to compute
the contributions to B*? arising from interaction between a dipolar molecule of species 1 and
an octopolar molecule of species 2 i.e. in the case of tensorial interaction energy of the form

1 1
gy = 1_5 (Pl)Q%qu (7;);1})[s . E (42)M§’01 Iu(PI)T(Pq T(Pq) (24)

The above expression leads to

Be =~ 0 Lo it o %) 23)
wherein the first term represents the contribution from interaction between the permanent
dipole moment g, and the induced dipole moment of the tetrahedral molecule (the second
term in Eq. (24)), whereas the second term is contributed by interaction between the dipole u,
and the octopole £, (the first term in (24)).

With the potential of Eq. (3), we now have by (25)

b o 2 ( 03
12) 12 H1 2 22\ H 2
Bnon-centr = 16} 2, (0'12812> { <O’12) (} 12) 5 ¥ 12 0'3_2812) 10(y12)} . ( 6)

The expressions derived here allow to determine the octopolar moment of a tetrahedral
molecule not only from measurements on the pure gas, but moreover from the investigation
of gaseous mixtures whose one component consists of the tetrahedral molecules for which
£ is to be determined, whereas the other component is either atomic (e.g. argon), dipolar
or quadrupolar.

3. Determination of the octopole moment from other molecular effects

Obviously, it is desirable to possess more data on the octopole moment, since the
possibility is then given of establishing a reasonable value of £ for the molecule in question
by comparing the various results. Having this in mind, we shall now proceed to discuss in
brief the chances of determining £ from other effects accessible to measurement in real
gases.

Dielectric polarization and molecular refraction. Generalizing the theory of Buckingham
and Raab [18] to a mixture of gases consisting of tetrahedral molecules, we obtain the second
dielectric virial coefficient (strictly — its orientational part) in the form

i 32 N2 _
B(d) Fk_T_{ 292—{— .Qz } <rpqm i (27)
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For a gas consisting of tetrahedral molecules of a single species admitting of the 6-12
Lennard-Jones potential, Eq. (27) yields [2, 3]

64 N? 202 /.—10\ 4b 02
T @02y = g(g) (———~) Hyoly)- 28)

Ll
Bp = 5
a'e

More information on the octopole moment of tetrahedral molecules can be derived
from the second refractivity virial coefficient which, in the present case, is of the form

i An — 4 —
BY = 5 7 {“i“j(“ﬁ o) {rpg Vi + 7 i+ Q) $rg ij}’ (29)

with 9, denoting the hyperpolarizability induced in a molecule of species z by the electric
field of the octopole £; peculiar to the molecule of species j. In the present investigation,
we refrain from distinguishing between the optical and electric polarizability of a molecule.

For a one-component gas and the potential of Eq. (3), the relation (29) reduces to {3, 5]

B3 =2 ’y’— {(;i) Hy)+ 5 (‘Zﬁ) (9—) Hmo)}- (30)

In particular, for molecules presenting no octopole moment, Eq. (30) reduces to the equation
derived by Buckingham [4].

Molecular light scattering. Quite generally, we can distinguish an isotropic and an
anisotropic component in Rayleighian light scattering, as characterized by the molecular
constants F;, and F,;, respectively, which can be expressed by Rayleigh’s ratio R and

the depolarlzatlon ratio D as follows [8]:

8IA%VR 6—7D 13544VR D

8n%(n2+ 2)26 + 6D’ Fanis = 16a%(n?+ 2)21+ D’ (1)

Fis:

with A denoting the wavelength and n — the refractive index.
‘The first virial coefficient of light scattering amounts to A% = 9N, whereas the
second one, BY), for a gas consisting of tetrahedral molecules, is given by

B = — 180 NBi+ 2L (a5 ) B, (32)

wherein B® is the total second virial coefficient of the equation of state of real gases and,
in the case of tetrahedral molecules, is the sum of the terms (2), (11) and (12); B is
given by Eq. (29).

In the case now under consideration, the first virial coefficient of anisotropic scattering

vanishes, A:(allﬁs = 0, whereas the second coefficient, Bg’,’lfs, is given as

BY, = 18N® {“?%2 (rag pii+ §4§ (1832} + 648,42, + T263) <’.;qlo>ij} ; (33)

;= ﬁfgz being the hyperpolarizability of the tetrahedral molecule of species ¢ induced
therein by the electric field of the octopole £, of a molecule of species ;.
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Electric and magnetic birefringence. The theory of the second virial coefficient of the
molecular Kerr constant K, of dipolar and quadrupolar gases is due to Buckingham [9]
and an analogous theory of the molecular Cotton-Mouton constant C,, has been evolved
by the present author [10]. On applying these theories to gases consisting of tetrahedral
molecules, we obtain for C,

5 AaN? 8
BE ~ SET { o} i) <rag Vit 35 [74i€:02F +3(Bi&; +&:8;) 22 +

+7‘Q?ﬂj§f] <rp_qm>u} ’ (34)
and for K,
i drn - g 327 N2 _
B = g Borts + g5 diou(@d Q)+ Qe ><rpq” i (35)

with g; denoting the mean magnetic polarizability of a molecule of species 7 and & = 5,(2,, —
its magnetic hyperpolarizability, B¥). being given by Eq. (33).

anis

4. Discussion and results

We now proceed to apply the expressions of the various second virial coefficients derived
in Sections 2 and 3 for evaluating numerically the octopole moment of the methane molecule.

With the following values for CH,: [11] ¢/k = 137°K, ¢ — 3.882 A, & = 2.6 10724 cm3
and [19] B,,, = —44.5 cm3/mole at T = 295°K, we obtain by Eq. (18) ¢y, = 5%
X 10784 es.u.

The value of £ can also be determined from Eq. (17) by applying it to a mixture of
argon and methane, for which Thomaes et al. [19] found experimentally Bgy »
= —26.9 cm®mole at T = 295°K. Assuming the preceding values for CH, and [11] ¢/k
= 122°K, ¢ = 3.4 A, & = 1.63%x10-2¢ cm3 for argon with the well-known relations &,
= (e11600)} and oy, = (0y3 +0p9)/2, We obtain by (17) a value of Qcp, = 8x10734 es.u.

Similarly, it would be possible to use Eqgs. (23) and (26) for computing ¢y ; however,
no measurements of B1® were available to the present author.

With the result of B, = 9.0 cm®%mole? at T = 242°K obtained for methane by Johnston
et al. [2], Eq. (28) yields a value of 2y = 6X 10734 e.s.u. For comparison, it should be stated
that Parr (cited from [2]), using a one-centre wave-function with Slater orbitals, obtained
Oy, = 6.5x1073% e.s.u.

Since the hyperpolarizability of the methane molecule is known to amount to y = 2.6X
% 10736 e.s.u. as determined by Buckingham and Pople [20] from Kerr’s molecular constant,
Eqgs. (30) and (32) will be of direct use in determining ¢y, as soon as the values of By and
B,, become available experimentally.

Obviously, our problem can be restated to gain information on the values of the hyper-
polarizabilities 8, ¥ and & by means of Egs. (29), (32), (33), (34) and (35) if the octopole
moment of methane is known, say, from measurements of B and Bj, or of the free energy [16]
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or from phase transitions in the solid state [21]. Clearly, such data will rather be of an orienta-
tional character as, on the one hand, the measurements of the respective quantities must
unavoidably present considerable difficulties and involve error and, on the other, our compu-
tations are of an approximative nature, albeit containing the most essential of the possible
contributions.

In concluding it can be said that, once it becomes possible to measure the entire set
of quantities discussed above, we shall obtain information not only on the value of the octo-
pole moment of the tetrahedral molecule of the gas considered, but moreover on the values
of its hyperpolarizabilities 3, y and &. Despite the many difficulties which will have to be
overcome, further research in this direction can be fruitful and will surely bring much
interesting information concerning the electric and magnetic properties of tetrahedral
molecules and the nature and magnitude of the forces with which they interact.

The discussion of the present paper can be easily extended to the case of gases consisting

of octahedral molecules such as SF, possessing a hexadecapolar moment given in general
by a tensor D4, of order 4 (see, [22]).
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