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Introduction

In the course of 1962, a number of papers appeared on the generation by lasers of
higher radiation harmonics and on the theory of various non-linear optical effects
related to such radiation and able to appear in different systems (see, e.g. [1]—[5]).

The present part of our investigation is intended to give a concise account of
the formal theory of two non-linear optical effects that predictably can be produced
in certain conditions by a periodic field of high frequency and very great intensity.
The one consists in the effect of dynamical (optical) birefringence of the medium,
whereas the other — in the non-linear depolarisation of Rayleigh scattering.

Our theory is based on the calculation of the oscillating dipole moment induced
in a given molecular system by a periodically varying electric field E; of low intensity
and of frequency w; in the presence of another field E, of very great intensity and
of frequency w,. Use is made of Dirac’s quantum-mechanical perturbation cal-
culus, to the third approximation inclusively. The first approximation determines
the linear polarisation of the system due to the field E;, while the second and third
account for its non-linear polarization as produced additionally by the strong field E,.
In an isotropic medium such as a gas or liquid, the presence of the non-linear effect
is due not only to the direct influence of the strong field E, on the dipole moment
of an atom or molecule (hyperpolarizability effect), but, moreover, to statistical
orientation of the induced dipoles in the effective field E,. In some cases the latter
effect can by far exceed that of hyperpolarizability. A formula for the degree of
depolarization, to be derived here for the latter case, yields directly the sign and
value of the optical anisotropy of an axially symmetric ‘molecule.

Calculation of the oscillating dipole moment

Consider a molecular system subjected to two macroscopic electric fields E; ()
and E; () varying periodically with frequencies w; and w, (conveyed by two electro-
magnetic waves). The total Hamiltonian of the system is

) H=Hy+H +H",
[201]
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where H) is the Hamiltonian of the non-perturbed system (at zero external fields,
E1 = E2 = 0), and

, 1 - " 1 _
¥)) H=———2~(M-E1++M-E1), H =—~2-(M.E2+_|_M.EZ)

are the Hamiltonians of the perturbed system. The negligible interaction between
the magnetic fields and the molecular system is not taken into account. In Egs. (2),
for brevity, we use the notation

?3) Ef = Eji e*™',  Ef = Ej e*'",

where Ej and Eg are arbitrary vectors with, generally, complex components.
The operator of the system’s electric dipole moment is given by

(4) M= Z eé; ri,
i

where ¢; is the elementary charge and r; —its radius vector; summation in (4)
extends over all charges of the system.

Assume the system, previous to applying the fields E; and E,, to have occupied
one of its energy levels W, We assume this as the ground state and denote the
eigenfunction corresponding thereto by SP;O) (r, 0). The state of the system in the
presence of the fields E; (f) and E, (¢) is given by the wave function ¥, (r, ¢), which
has to fulfil Schrédinger’s equation. Our problem consists in calculating the electric
dipole moment P (¢) induced in the system by the oscillating field E; (¢) in the pre-
sence of the strong field E, (¢). The quantum-mechanical mean value of the a-com-
ponent of P (¢), for the state given by ¥, is

(5) Py = f Yy P, ¥, dr.

We shall calculate this mean value by Dirac’s perturbation method for non-
degenerate and non-stationary states to within the third approximation. Accordingly,
we proceed to expand the wave function of the perturbed system in the state g,
as follows:

(6 Vo) = Y {aD + P +aP +aP+ ..} PO et
n

here a’ = b4y, while the remaining coefficients a{°, a?, ..., a®*" are functions
of the time and can be calculated from the set of differential equations

©) a0 = N (Hyt Hpp) ad eont, 5=10,1,2,3, ...
k

The Bohr frequencies have been denoted

8 W = Walh, wnx = 0n— wp = (Wy— Wi)lh,
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and the matrix elements of the perturbations
©) Hy = [VOHYPdr, Hy= (o0 5P dv.

On putting the integration constants equal to zero in calculating the coefficients
a1 from Eq. (7) (indeed, we are interested solely in the terms linear in E; and
in the ones proportional to products of E; and E, or E}), we have

+ +
2 = _1_ (Mg - ET) + (Mug - E5) elongt
n Zh C()/n,g i wl wng i w2 ’
oL { (MuiEE) (Meo-ES) (MuiEF) (Mg~ EJ)
" 4h2 44 ((wng+ w1+ 03) (Wrg + @3) (gt 01 F 02) (Wkg F w7)

(M1 EF) (Mg EfY) (MyxE5) (Mg-ET)
(wng + 01 F w)) (wrg + @) (Wng F 01 £ 02) (kg F 1)
(M Ef) (Mig-Ey) | (Mux-E5) Mg ED)) |,
(0ng £ 202) (Wrg £ @2) wng (Wkg F ©2) }e ’

/
o= L { (Mui+ Ef) (M- E) (Miq- Ey)
* 813 4 \(wng 01 & 203) (0kg £ 20) (w1 £ @2)
(Myi-Ef) (Mi-E5) (Mig-Ef) | (Mux+EY) (M- Ey) (Mig-EY)
(wng £ 1) wrg (wig F @2) (wng F 1) 0rg (@19 F w2)
(M- EY) (Miz-ES) (Myg+E5)
(wng F 01 & 02) (0kg + 207) (w14 £ )
(Mg E) (M- Ef°) (Mig-E5)
(wng £ 1 £ 20;) (Wkg £ 01 + @2) (W19 £ ©2)
(Myui+E) (M- Ef) (Mig-E)
(wng £ @) (Wkg = 01 F @2) (w19 F 2)
(Mux+EF) (M- Eif) (Mig-ES)
(wng = @1 F 207) (wrg T 01 F @2) (019 F @2)
(Mux+EF) (Mi-Ef) (Mig-E5)
(0n T @) (Wrg £ 01 £ @3) (W19 £ w2)
(M- Ef) (M- Ey) (Myg-EY)
(WngF w1  207) (Wrg = w1 £ @3) (wig + ©y)
(Myx+ E) (M- E5) (Mig-EY)
(0ng F 01 £ 207) (wrg F 01 T ) (w19 F @1)
(MnxEf) (Miy+ E5) (Myg-ET) (MuyET) (Mia-Ey) Mig-EF) | -,
(wngF o)) (WrgFortwy) (WigFor)  (Wngtor) (Wkgto1E02) (wlgiah)} e

(10) +
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In the above expressions, My is a matrix element of the electric moment
vector (4) defined as in (9); moreover, for brevity, use has been made of the notation

Ef _ Ef ET

wngiwl C()ng‘i‘ﬁ()l w’ng_wl

, etc.

From the definition of Eq. (5) and the eXpansion (6), with the coefficients (10), we
obtain the required expansion of the induced dipole moment of the system, thus

(11)  P,gg = {A% (0) + B, (01, 02) Ezy + § C%5 s (01, 03) Ezy Egs + ...} Eyp,
where the first term is given by

(12) Ag/g (wl) Elﬂ = Z {6119 a;cl) + a%l)' 6kg} Manlc elonkt —

nk
——1_ {MagnMﬁ”gElﬂé_ElT?MﬁgnMang}
T 2h 4~ :

Wng '._t w1 Wan $ aq.

The polarizability tensor A, of the system, as defined by the foregoing ex-
pression, characterizes the linear effect produced by the weak oscillating electric
field E; = Ey, (cos ot -+ ¢1). A similar tensor appears in the quantum theory of
dispersion due to Kramers [6].

The remaining two terms of the expansion (11) are given by

(13) B (@1, ) Eip By = 3 {8ng 0P +a0" o) + D" 8} M, eons!
2

A4 CF, (01, 0) Ep By Epy =

— (3 n* (2
=2 Z {67”, ak) + agz) a§6)+ ag)" a;ﬁl) + a%‘l)* 6]{;{]} Mank eiwn}ct.
nk

The tensors B,;, and C, s+ defined thereby account for the non-linear effect produced
by the additional interaction of the molecular system and the strong electric field
E; = Ep; (cos wy t+ ;) and are termed the hyperpolarizability tensors of the
system. On substituting into (13) and (14) the coefficients al, a? and o defined
by (10) and on effecting the necessary operations, we retain on the right 71L1and side
only'terms proportional to E) E, and E, E;, respectively. The results thus obtained
consist .of a large number of terms and cannot be conveniently presented here in
an explicit form; the way they depend on the frequencies w; and w, is clearly seen
from the form of the coefficients (10) (similar expressions for three frequencies
1, w2 and wj are given explicitly in [2]).
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Dynamical birefringence

The tensor of the dynamical electric permittivity of an anisotropic system of
volume ¥V is given by the equation

(15) (6gr— 08 V = 4m <g§:>E ?

where the symbol < ) stands for the statistical mean value in the presence of the
strong fields E,, whilst o and 7 are indices labelling the components along the axes
of the laboratory coordinate system XYZ.

On substituting the expansion of (11) in Eq. (15), we have

(16) (aar— 60'1:) V=A4n <A¢rr (w1)+Batv (wls 602) E2v+ '12’ Carvp (601, (,02) EZv E2p+"'>E,'

In particular, we now proceed to discuss this equation for a molecular system
possessing a centre of inversion, for which B,,, = 0. Indeed, if we consider that,
by statistical mechanics,

1
2 Dyq eXp { (Wg — —A 5 (w2) E,, E2ﬂ )}
A7) (D=

Xe - le(Wg_E—A @I EEy—.))

g

we obtain the dynamical birefringence, by Eq. (16), as follows:

19 (e ¥ =2 {Cpralan 09+
| 1 » .
+ g A @) A @ | Gy — 119 0, ) B

here, i and k are unit vectors along the axes X and Z of the laboratory system,
respectively (the electro-magnetic wave with vector E; propagates in the Y-direction),
and e, is the unit vector in the direction of the field E;. The brackets ¢ > without
lower index denote the mean statistical value for the non-perturbed system as resulting
from Eq. (17) for E; = 0. The tensor A.; (w;) accounts for the polarizability of
the system due to the electric field E,; its form results from (12) on replacing therein
w1 by w3.

If isotropic averaging of (i, iy — k, k;) €2, €25 can be carried out first indepen-
dently of statistical averaging, Eq. (18) yields

(19) (oo — e20) V = 12 (ke — (-] {(3Copag (@15 ) +
' 1
=+ 3Cappa (w1, w3) — 2Caaﬂﬁ (w1, 02)) + ﬁ@Aap (w1) Aaﬂ (wo) +

+ 34, (@01) Age (©2) — 2Au0 (01) Agy (@)} E3.
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If, in particular, the system consists of N non-interacting atoms or molecules
possessing the spherical symmetry, Eq. (19) reduces to

(20) (62— €22) V = 2N Z Py (9 (01, 02) — 9% (01, @)} B3

herein, y,, and y, are the hyperpolarizabilities of the isolated atom or molecule for
E; and E, directed mutually parallel or perpendicularly (the matrix elements y
and y% can be computed from Eq. (14)), whereas Py is the probability of the system
being in the state of energy W, Moreover, in passing from Eq. (19) to (20), the
assumption was made that the electric vector E; oscillates parallel to the Z-axis.

For the case of anisotropic non-interacting molecules, on dropping the term
relating to hyperpolarizability in (19), we have

2aN I
g ZPg (37 (w7) af8 (03) — o (o) off ()} E3.

Q) (ez—éezn) V= kT

Here, by (12), the tensors ag] ¢ (wy) and aff (wy) of the dynamical polarizability
of the molecule are determlned as follows (s =1 or 2):

2 Wng
g9 - — _
(22) ‘ ags (ws) 7 Z”: wi,—wﬁ Mygn Mpng
with myy, denoting a matrix element of the dipole moment of the isolated molecule.
On going over to the purely classical case and assuming the frequencies
and o, to be far remote from the absorption band, Eqgs. (20) and (21) yield formulas
already derived by Buckingham [7].

Non-linear depolarization of Rayleigh scattering

We now proceed to calculate the depolarization of the scattered electromagnetic
wave of frequency o, when another wave of frequency w; is incident on the scat-
tering system. The intensity component of the scattered wave with oscillations
given by the unit vector n, at a point distant by Ry from the origin, is now

1
(23) I, = m<Pa P.n,nop g, -

If the incident wave of intensity Iy; and velocity ¢; propagates in the Y-direction
and observation takes place in that of the X-axis, the degree of depolarization is
given by the ratio of the I, and I; components and, by (11), (17) and (23), assumes

the form
1
4 D =Dy + o {1 — Do 1%} E2,

where Dy = I/I” is the degree of depolarization of the scattered wave E; when
no other wave is present (E, = 0). The respective components should be computed
from the following expressions, putting therein n=j or n =k:

I
— (wl) <Act (0)1) Avq ((Dz) Ny €y Ny elq))

0) =
@9 1=z
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Iny
@9 12 = 5 ([0} @1+ 2022 (A @) Ol 1,00 + |
+ Coiau (@1, 02) Ay, (01)) + 2 (@1 + w2)* B, (w1, @) By, (01, 03)] e, €3, +

4

@y
g Ao 00 A%y @) [43, 02 2302, — (s @3) exs )] g enmy e, -

I{? determines non-perturbed Rayleigh scattering and I — the additional non-
linear scattering due to the perturbing effect of the second, high intensity electro-
magnetic wave E,.

If, in particular, the vector E; of the first, plane polarized wave oscillates in the
direction of the X-axis (e; =), we have Dy =1 and Eq. (24) becomes

Ganis . jprac st
(27) D—1=—F—1lej)—(er- k)] E;.
The quantities Fanis and Ganis are obtained directly from Eqgs. (25) and (26) by

isotropic averaging over all possible directions of the unit vector m, e;.and e, as
follows:

1 »
(28) Fanis = '_2_' <A¢'r‘t (wl) A:g (wZ) (460\7 61:@ - 60@ Jrv - aar 6vg)>,

1 w7\2 * *
@) Gans = 55 ([(1422) 1ee @) Cly 1, 0+ Copy (1, 09 ALy (@01 +

wy\4 . 1
2 (14 2 B 01,02 By (01,00 + i A 0) 7 1) Ay )]

X {466\’ (61}. 6gy + 61:;4 6).9) + 46}.u (60'1' 6vg + aag 6tv) - 1060\: 61’9 61/1 +
+ 116:@ (601 6vu + 6au 61:}.) +3 [601 (6v}. 69;4 + 5vu 6).9) =+ 60@ (5v). 61:;: + 6vu 61}.) +
803 Qo o+ 81 80 + 82 B B+ 800 0]} )

From Eq. (27), the non-linear variation in D produced by the polarized electro-
magnetic wave of frequency w, is seen to be positive or negative according to whether
the vector E, oscillates in the direction of Y or Z. In the case of E, oscillating parallel
to X, we have D = 1 meaning that the degree of depolarization undergoes no non-
linear variation. Also, Eq. (27) can bz applied in the case when E, is conveyed by
a non-polarized wave; now, however, the factor [(e;+f)2 — (e2+k)?] has to be avera-
ged over all possible directions of the vector e, in the plane perpendicular to the
direction of propagation of the wave.

For the case of a gas consisting of N axially-symmetric molecules, Eqs. (28)
and (29) reduce to (neglecting the terms accounting for hyperpolarizability)

(30) Fanis = N ), Pgaf? () — o ()2,
g

N

€1} Ganis = kT Z Py {aﬂg (w)) — a‘f (wl)}2 {aﬂg (wy) — aﬂ_y (wz)},
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with o) and a; denoting, respectively, the polarizabilities in the directions parallel
and perpendicular to the symmetry axis of the molecule.

If, in particular, the gas molecules are all in one ground state, by (30) and (31)
Eq. (27) reduces to the simple form

@ D1 =B O, o ey ] B,

The formula derived above allows to determine easily the sign and value of the
anisotropy of polarizability of the axially symmetric molecule. It is analogous to
Rocard’s [8] formula for the static case, when w; — 0 (cf., moreover, [9)).

Finally, the preceding considerations can be generalized directly to the case of
non-linear Raman scattering. For this purpose, utilizing the function (6) with
coefficients (10), we have to calculate the electric moment Py, (¢f) induced in the
quantum system as the latter goes over from state # to state g owing to the effect
of the two incident electromagnetic waves of frequencies w; and w,, respectively.
In the case of molecules presenting no centre of inversion (e.g. tetrahedral CHy
or CCl, molecules), in addition to the usual Raman scattering with frequencies
wng+wy, additional non-linear scattering appears with combinations of the fre-
quencies wagt 1 £ w; and @ag+ w1 F w;. In the case of molecules possessing a centre
of inversion, non-linear scattering appears with combinations of the frequencies
wng + oy and the frequencies wngy + ®) + 2w;, wag+ 01 F 2w, etc. This problem
will be discussed in full detail separately.
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