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Introduction

According to the electron theory evolved by Lorentz [1], an atom can be regarded
as an isotropic oscillator. Voigt [2] showed that such an atom when placed in a strong
d.c. electric field behaves like an anisotropic oscillator whose frequency of oscilla-
tions parallel to the field vector is three times that of the oscillations perpendicular
to the field. These variations in eigenfrequencies of the oscillator are proportional
to the square of the electric field strength and give rise to optical birefringence in
the gas, which now presents an assembly of such anisotropic oscillators. The bire-
fringence, generally, is insignificant; however, it can become anomalously large for
light ¢’ a frequency near an absorption line.

According to Buckingham [3], an atom or spherical molecule should.also become
optically anisotropic when in the oscillating electric field of a light wave. The intensity
of the latter being large enough, the gas can produce optical birefringence even if
no d.c. electric field be present. Similarly, in the electric field of an intense light
beam, non-linear variations of the dielectric permittivity can appear, as shown
by Piekara and the present author [4], [5]. Finally, in addition to the usual Rayleigh
scattering [6], the interaction of atoms or spherical molecules with an intense light
beam can give rise to non-linear light scatering as considered recently by the present
author [7]. As yet, of all the non-linear effects mentioned above, only the one predicted
by Voigt has been observed in rarefied sodium vapour in the vicinity of the D line [8].
At present, there is hope of observing the other three non-linear optical effects,
as devices exist (“lasers”) making possible to produce light beams of very great
intensity.

In the relations derived by Buckingham and by Piekara and the present author,
account had not been taken explicitly of the dependence of the non-linear optical
effects on the frequency of the light wave. It is the aim of the present paper to give
a discussion of the dispersion of the non-linear optical effects on the basis of Lorentz’s
classical electron theory (a treatment based on quantum mechanical perturbation
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theory is the subject of Part II of this investigation). The author feels justified in
dealing with these effects on the classical as distinct from the quantum level, since,
indeed, the classical theory of dispersion of the refractive index is in satisfactory
agreement with the experimental data. The formulas derived in the course of the
present investigation allow to determine with accuracy in what conditions the
effects under consideration should be expected to achieve anomalously high values.

Foundations of the theory

We shall consider a gas of volume ¥ containing N like atoms or spherical mole-
cules. Let two plane polarized electromagnetic waves of oscillation frequencies
w; and wy, respectively, w; # w,, be incident on the volume V. We assume the
electric field strength E; = Ey; "'’ conveyed by the wave of frequency w; to be
small and assign to it the role of measuring field, whereas that of the other wave,
E, = Ey, ™', suffices for producing non-linear polarisation of the gas. In the
case under consideration, the dipole moment induced in a spherical molecule can
be expressed by means of the vector equation (here, let E; and E, have the same
direction)

| ,
o m = {a (0)+ 77(0)1, w) E3+ ..} Eq,

where a (w;) denotes the isotropic polarizability of the molecule dependent on
the oscillation frequency w; and accounting for the linear effect produced by the
weak measuring field E;. The non-linear polarizability of the molecule due to the
square of the intense polarizing field E, is determined by the hyperpolarizability
coefficient y (w;, w,), which depends on the oscillation frequencies w; and w; of
the two electric fields.

The dependence of a (w;) and y (wy, wp) on w; and w; in explicit form can
be obtained quite easily from Lorentz’s classical electron theory [1]. Let the i-th
electric charge e; of a molecule of mass m; undergo the displacement r; with respect
to its equilibrum position as a result of the oscillating electric fields E; and Ej;
its equation of motion can now be written as follows:

) mi;,; -+ my [35 ;‘i + (ki — ¢ rf) ri = ei(Ep glont + Ey, el t) ,

where k; and ¢; are the coefficients of the elastic forces tying e; to its equilibrum
position, k; being the coefficient of harmonicity and ¢; — that of anharmonicity
of the oscillations. In Eq. (2) the term my iy accounts for damping of the
oscillations of the charges, where f; is called the damping constant.

Let w; = (ki/m;)1/2 denote the eigenfrequency of the charge e;; the solution
of (2) is now of the form

f, b ™

(3) (4 E01 e € E02 e +
ri = N .
mi(w} — o} + o) mi(0]— i+ iBiw))
3¢; €3 Eyy ™' B2, et

m (02 — 0 + ifi 1) (07— w3 + ifiw2)? [0F — (w1 + 202)2 + if (w1 + 2w2)]
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With regard to the definition of the dipole moment of the molecule, m =Z eyry,
we have from Egs. (1) and (3) ¢

@ a(wp) = Re Z

O (o, )=

mq (wz——w1 ifroy)’

6c; e
mi (w; — o+ ifs ) (0] — w3+ ifs wp)? [0F —(wi42w)2+ iy (w1 +2w2)]

=R62

Thus, in addition to the fundamental harmonic oscillations of frequencies w; and Wy,
oscillations of the third harmonic occur with the frequency w;+2w,.

Now, if the molecular oscillator possesses the only oscillatory eigenfrequency ey,
the foregoing formulas yield

w} e;
©) @)= a0 =0, aO=2 s
&
O e =y O T R Wi — o1 T 200

y(O)—6Z el

where for simplicity we have omitted the terms with damping B, and a (0) and
v (0) are the polarizability and hyperpolarizability of the molecule at w; = w; = 0,
respectively.

For the case of oscillations of the vectors E; and E, directed variously along
unit vectors e; and e», Eq. (1) has to be replaced by

1
® m= {a(w;)e; + 6 V(@1 @2) [e1+2(e1-er) 2] Ej+ ..} E;.

Non-linear variation of the dynamical electric permittivity

The relation between the electric permittivity ¢ of a gas and the mean value of
the projection of the dipole moment on the direction of the measuring field,
{m-e;)g, p in the presence of the fields E; and E,, is given by the well known
equation

€ (e—1DE, = dno {m-ey)p g,

where ¢ = N/V is the number density of the molecules. On substituting herein
Eqg. (8), the following expression is obtained for the dynamical electric permittivity:

1 o
(10) ¢ —1 =4mp {a(wl) T 5 7 (@1,0) [1+2(es-e2)?) E; + },

the wave-line (~w) denoting the time average.
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Eq. (10) leads to the following expression:
2z
an de = = gy(w1,0) [142(e; - e2?1E3

for the change in the electric permittivity of the gas, as due to the strong electric
field of an electromagnetic wave incident thereon.

If the measuring electric field E; varies but very slowly with respect to the rapid
oscillations of the polarizing field E; (of e.g. optical frequency) orif w; — 0, Eq. (11)

with respect to (7) reduces to (we put @, = w, and E2 = (1/2) E} with E, denoting
the amplitude of the wave)

1 gy (0)

37 (@ — 022 (0 — 40?)
This formula determines electric saturation as produced in the gas by an intense
light beam — an effect previously discussed by Piekara and the present author
[4], [5] for light of a frequency very remote from absorption bands. For the case
of parallel vectors e; and e, the quantity As” is largest, whereas if ¢; and e, are
mutually perpendicular Ade, is one third of de,.

(12) Ag = [142(e;-e2)2] 2.

Optical birefringence

Let us assume the measuring electromagnetic wave to propagate in the direction
of the Y-axis; computation from (10) of the dynamical electric permittivity in the
ditections of the axes X and Z now leads to the expression

4 -
ay e = 507 (01,0 [(k-e22— (i-e?] £

determining the birefringence produced in the gas by the strong oscillating electric
field E (i and & are unit vectors in the directions of the axes X and Z of the labora-
tory reference system, respectively). Eq. (13) shows that the value and sign of the
optical birefringence depends on the direction of oscillations of the electric vector E,.
In particular, with E; oscillating in the direction of the Z-axis (e; = k), we have
by Egs. (13) and (7):

dr w8y (0)E2

3 ¢ (@f— o) (0 — 02 [0 — (w1 + 2007]

(14 Eg— &y =

It should be noted that, if the wave E, is non-polarized and propagates in the
direction of Y, birefringence vanishes in accordance with Eq. (13), or is equal to
+1/2 of the amount given by Eq. (14) according to whether the wave E, propagates
in the direction of Z or of X.

If the frequencies w; and w, are equal or differ but little, Eq. (14) reduces to

27 w8y (0)E2
3 (0 — w23 (@) —9a) |

(15) &z— & =

At optical frequencies, this formula describes dispersion of the effect predicted by
Buckingham [3].
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Eq. (14) is also applicable if E, is an electrostatic field (wp = 0), yielding the
relation

dn a)g y(0)

G LA AN )
30—

, (16) o Ez— &z
which accounts for Voigt’s effect [2].

Non-linear light scattering

Let us assume ¢; to be the propagation velocity of the electromagnetic wave
of frequency w;. With the wave E; = Ep, e’ simultaneously incident on the gas,
the intensity of the wave scattered by the latter, as observed at a distance Ry from
the origin of XYZ, is given by the formula

N .
a”n In= e {(m-m2)g g,

wherein the unit vector n determines the direction of oscillation of the electric
vector in the scattered wave.

With respect to Eq. (8), the intensity I, is obtained as follows from (17) on
retaining the terms in a2 and ay (higher order terms are discussed in [7]):

18) I __]Y_(wl)4 2 22
18) n=w\ {02(w1)(e1-n)2E; +
1 Wy 2 WarAvAAA
+ 3 a(w))y (w1, w2) [1 +2E] [(e1-m)2 + 2(ey+n) (ez-m) (e1-€2) 1 ETES},

where a (w;) and y (w;, ;) are given by (4) and (5) or by (6) and (7).
In considering scattering produced by a single, extremely intense light beam
of frequency w, the intensity In is given by

19 I,= : ﬁ(ﬁj—)“{ 2 () + 2 2} 2 F2.
9) v =7 m o) P@ T g @y @E e nE;

by (6) and (7), this can be rewritten thus

N (w)4{ wg a2 (0)

2 Ri\e/ l(@f—w??

200 I,= P

9wy’ a(0)y(0)
4 (wp — w?)* (0§ —90?)

E5+ } (e-m)2E3.

The above formula accounts for both the usual Rayleigh scattering [6] and the
additional non-linear scattering [7] in its dependence on the incident light fre-
quency . '
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Discussion

We introduce the following functions of the oscillation frequency w:
g ;5

21) f4=(w—(2)_w—2)2, S6 = (@ — w22 (0 — da?) *

8 10
Wy Wy

S o @900 0 0T et @ — 9D

(22)

The function f; describes the dispersion of Voigt’s effect (Eq. (16)) and of Ray-
leigh’s scattering (the term linear in the incident light intensity Jy = 1/2 E? in
Eq. (20)). The functions fg, fg and fio describe, respectively, dispersion of electro-
optical saturation (Eq. (12)), dispersion of optical birefringence (Eq. (15)), and
dispersion of non-linear light scattering (the second term in Eq. (20)). Hence,
Voigt’s effect and linear Rayleigh scattering are seen to present but one absorption
line for wg = w, as in the case of dispersion of refraction, given by the function

@
(23) fo= prampry
The other three optical effects, in addition to this absorption line, exhibit yet another
line: electro-optical saturation at wy = 2w, whereas optical birefringence and non-
linear scattering at wy = 3o.

We see from Egs. (21) and (22) that in the neighbourhood of the resonance
line all effects under consideration can exhibit very high values. This suggests that
the gases and the experimental conditions should be matched in such a way as to
provide for maximal values of the effects investigated. Obviously, quite near the
resonance line, their values may differ as a result of forces, not considered here,
damping the oscillations of the electric charges (see Egs. (3)—(5)).

For simple gases, the hyperpolarizability can at the most amount to y (0) =
= 3x10-36 es.u.,, so that Eqgs. (12) and (15) now yield

4  de; V=aNy(0)fsE5 = 6x10-12f¢EZ,
. 27 ) )
(25) (e:—ea) V =5 Ny (0)fs Ey = 4X 102 f3 E,

with N denoting Avogadro’s number and ¥ — the molar volume of the gas. Now,
with a ruby laser producing radiation with an electric field strength of the order
of 3x104 V/em = 102 e.s.u., Eqs. (24) and (25) yield for a simple gas in normal
conditions

Agp = 10-12f5, & — ez =~ 10712 f3.

From the above evaluations, it will be inferred that in these conditions the effect
of light on the dielectric permittivity of a gas (de) should not be accessible to
observation. On the other hand, there are good chances of observing optical bire-
fringence (¢; — &), as measurements of Kerr's effect in gases have been known
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to detect variations in the refractive index of the order of 10-12, Moreover, since
the optical birefringence as evaluated above can increase by a factor of at least
Jf3 = %100 in the neighbourhood of the absorption line, it should be conveniently
accessible to measurement.

In the case of a liquid consisting of spherical molecules, we obtain instead of
(24) and (25) the following formulas, if the Lorentz [1] local field is used,

-+ 2\4
@6) a0, =m0 5|32 82,

27 e 24 )
@) w—e =3 0O |5 ) B
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