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Synopsis

An equation is derived for the intensity of the light scattered by a gas immersed
in an inhomogeneous electric field, and formulas for the depolarisation ratio D and
Rayleigh’s ratio S are obtained therefrom. Investigation of the effect of the field
gradient upon D is shown to provide a direct method of determining the quadrupole
moment of axially.symmetric molecules. For a gas of spherical molecules, similar
investigation of D and S allows to determine directly their hyperpolarizability B as
induced by the field gradient.

§ 1. Introduction. Light scattering in the presence of a strong homogeneous
electric field by a gas whose molecules are small as compared to the light
wavelength has been the object of papers by Rocardl), Andrews and
Buckingham?), and this author3)4). Generally, anisotropic molecules on
undergoing orientation in the electric field produce a change in the intensity
and polarization of the light scattered. If scattering is investigated in the
conditions of fig. 1a, the depolarization ratio for a gas consisting of axially
symmetric non-dipolar molecules is given by the formula4)

a” - a_L E2

DE,) =1 —
(Bz) =1 7kT @

(1)
with «; and a, denoting, respectively, the electric polarizabilities parallel
and perpendicular to the symmetry axis of the molecule. From eq. (1),
investigation of the effect of a strong homogeneous electric field on the de-
polarization ratio makes possible the divect determination of the molecule’s
electrical anisotropy.

Obviously, if a gas consisting of quadrupolar molecules is immersed in an
inhomogeneous electric field, orientation of the quadrupoles will occur leading
to a change in the intensity and polarization of the scattered light. If we
provide for the experimental conditions of fig. 15, the following formula
is obtained for the depolarization ratio, as will be proved further on:

20

D) =1 — Tﬁe?Ezz? (2)
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here, 6 is the electrical quadrupole moment of an axially symmetric molecule
and E; is the z-component of the electric field gradient. Hence, investigation
of the depolarization ratio of light scattered in the presence of a strong in-
homogeneous electric field constitutes a new and dérect method of measuring
the value and sign of the molecule’s quadrupole moment. Another method
of direct determination of the quadrupole moment was outlined by Debye5)
and elaborated with much insight by Buckingham§) to yield quantitative
results. It consists in measuring the amount of birefringence induced in a
gas by the gradient of the electric field produced by the condenser of fig. 10.

fa) (b}

Fig. 1. The left-hand side shows schematically an anisotropic gas molecule oriented
along the lines of force of a homogeneous electric field, E,. To the right is the four-wire
condenser yielding the electric field gradient E,, = —E; at its centre and orienting
the quadrupolar molecules of a gas®)®). The primary light beam, of intensity Iy, is
plane polarized with its electric vector oscillating parallel to the Y-axis and propagates
in the direction of the X-axis. Light scattering observation is along the Y-axis. The
quantities I, and I, are the scattered light components oscillating in the directions
of the X- and Z-axes, respectively.

As compared with the Debye-Buckingham method, that proposed in the
present paper has the advantage of yielding the value of the quadrupole
moment directly, in accordance with eq. (2), whereas the birefringence of a
gas is moreover dependent on the optical anisotropy of its molecules. Our
method, however, presents the drawback that the effect consisting in
variations of the depolarization ratio as due to the field gradient is extremely
small, so that its detection and experimental investigation will be no easy
matter. ’

An external electric field, homogeneous or inhomogeneous, is able to
produce a change in the light scattered, even if the scattering molecules are
spherical. In the latter case, however, one has to use natural light in order
to obtain this effect, and observation of the light scattered should take
place at an angle ¢ with the direction of incidence. The degree of depolari-
zation in the presence of a strong uniform electric field is given by the
following formula3):

D(E.) :( I — 31E§>cosz 9, (3)
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wherein o is the mean polarizability of a spherical molecule, and y its
hyperpolarizability due to the square of the uniform electric field strength.

In the present paper it will be proved that, for spherical scattering
molecules immersed in an inhomogeneous electric field, eq. (3) has to be
replaced by

D(Ez) = (1 - %Ezz> cos2d, (4)

with B denoting the hyperpolarizability produced in the spherical molecule
by the gradient of the electric field strength.

The hyperpolarizability y appears in the theory of the optical birefringence
induced by a uniform electric field?), whereas the hyperpolarizability B
occurs in that of the optical birefringence produced in a gas by an electric
field gradientS$).

The hyperpolarizabilities y and B, moreover, occur in the following
formulas accounting for Rayleigh’s ratio:

se) = si(1+ L g, ©)

S(Ez) = S (1 + fi Ezz) , (6)

where S¥ defines Rayleigh’s ratio for isotropically polarizable molecules able
to scatter light in the absence of an external electric field.

In the present paper, after some general considerations on light scattering
by a gas immersed in an inhomogeneous electric field, we shall proceed to
calculate the depolarization ratio and Rayleigh’s ratio for the simplest
possible cases.

§ 2. Fundamentals of the theory. Consider an assembly of N identical,
non-interacting molecules possessing a permanent electric quadrupole
moment defined by the tensor 6)

@,xp = % E 5n(37n067n13 — 1’560‘@, (7)
3
wherein ¢, is the n-th electric charge of the molecule, and r, its radius
vector.

Now, let this assembly of molecules be immersed in the inhomogeneous
electric field produced by the four-wire condenser shown in fig. 15, We
denote the direction of the oscillations of the electric vector E in the incident
light beam by the unit vector e and in the scattered light by the unit vector
n; we at first assume e and n to be oriented quite arbitrarily with respect
to the laboratory coordinate system XYZ. The intensity of the light
scattered, as observed at a point distant by B¢ > 4 from the origin of XYZ,



LIGHT SCATTERING BY A GAS IN AN ELECTRIC FIELD 941

is now given by$)

I(E) = <

2n >4 NI() 6m0‘ 3’}%3
A R \QOE, 0E,s
Herein, m, is the a-component of the dipole moment induced in the molecule

by the oscillating electric field E associated with the incident light wave of
intensity Io. The statistical average in (8) is defined as

Natglyls >}L . (8)

u(T,Ezz)
T, e_ SR
<®>Eu f @( Ezzzl‘(T’Eu) dr ’ (9)
f e k' dr

where @(r, E;;) is an arbitrary function of state and u(r, E) is the potential
energy of the molecule when its configuration is 7, in the presence of the
electric field gradient E,, = —E 4.

For molecules with quadrupole moment defined by (7) we have, on
restricting ourselves to the term linear in the field gradient only,

M(’T, Ezz) - M(’T, 0) —_— %@aﬂE(xﬁ :%(T, O) — %@aﬂ(kakﬂ —— l‘al‘ﬁ) Ezz, (IO)

where i and k are unit vectors in the directions of the X and Z axes of the
laboratory system, respectively.

Analogously, in the same approximation, the differential polarizability
of the molecule is

omy
O0Eg

= Xap + %Bzxﬂ:ydEw = Xup + %Bzxﬁ:vd(kykd - z.'yl'd) Ezz, (1 1)

with «sg standing for the polarizability tensor of the isolated molecule, and
Bag:ys for its hyperpolarizability tensor. The tensor Bag:ys, which describes
the change in polarizability caused by the electric field gradient, was intro-
duced and discussed for spherical and axially symmetric molecules by
Buckinghams®).

By (10) and (11), eq. (8) yields to within E,, on averaging over all possible
orientations of the molecule with respect to the axes of the laboratory
system (see Appendix),

27 )4 NIy I

I(Ezz) = <T Q_OR%‘ 1 90f1cx2 + f2(3°‘oc/3°‘ocﬁ — O‘ococ“ﬂﬁ) +
1 1
+ 12g10c (Bocﬁ:zxﬁ + = Bzxzx:ﬁ‘y“ﬁ'y“‘ ey Oﬁaﬂ@zxﬂ> Ezz -+
3e kT

+ %(3g2 _ 2g1) [2(30‘aﬁBav:ﬁv - “aaBﬂvzﬁv"—Bm:ﬂv“Bv)‘l”

1
-+ —k‘]T (Saaﬂ%y@ﬁv - 2“aa“ﬁy9ﬁ7):| Ezz} ’ (12)
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wherein « = 4aq, is the mean polarizability of the molecule, and
= (n-e?, g = (n-e)(n ke k) — (ni)e-i)],
fo=3 4 (n-e)% g2 — (k)2 + (k)2 — (m-i)2 — (e-d),

Eq. (12) holds for a gas the molecules of which possess arbitrary symme-
try and for arbitrary conditions of observation of the light scattered.
If, in particular, the molecules present the spherical symmetry,

(13)

(X(xﬁ == aaaﬂ, @[xﬂ == O,

Bogiys = tB(—204p0ys + 3ay0ps + 36a60py), (14)
and eq. (12) reduces to
27 \* «2N1g B |
I(Ezz) :<T> W{fl'{"glz“bzzjy (15)

B = 2 Bag:ap being the mean hyperpolarizability of the molecule. At zero
field gradient (E,; =0), eq. (15) reduces to the well-known Rayleigh
formula9).

In the case of strongly anisotropic molecules, we are justified in omitting
the numerically small terms relating to the tensor Byg:ys in eq. (12); on
assuming moreover the axial symmetry, we obtain

2n )4 2N |

k@
I(Ez) = < 2 “S‘RTI5fl+f2'<2+ﬁ[14g1+(332_2g1) K] Ezz}: (16)

since

Qug = a{éaﬁ + K(3Sa55 — 645)},

(17)
@,xg = %@(380‘85 —_ (S(xg).

Herein, « = (@ — «,)/3« is the anisotropy of polarizability of the axially
symmetric molecule, @ = @33 = —201; = —20, is its quadrupole
moment, and s is the unit vector along the axis of symmetry.

§ 3. Depolarization ratio. Our problem now consists in calculating the
appropriate measurable quantity and in choosing, to our best advantage,
the conditions of observation of the scattered light. Thus, let us assume for
simplicity that the incident light beam is polarized and propagates in the
X-axis direction with its electric vector oscillating at the angle ¢ to the Z-
axis, e = j sin ¢ 4 k cos . If scattered light observation is carried out along
the Y-axis, the depolarization ratio is defined as the ratio of the scattered
intensity component oscillating in the direction of the X-axis (n = i) and
the component oscillating along the Z-axis (n = k). By eq. (16), these
components are of the form:
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27 \4 o2NT, I 3k20 ) ,
[x—_—<l—> “gﬁlSKz + 7kT (COSZ(P—' l) EZZ » (18)
2\ 4 2NT ) xO .
I, = <_;> aSRg 0{3K2—|—(5+K2) cos? ¢+ ST [3x+(14+x) cos? g] EzZ} (19)
Since
_ - D o B E 20
D(Ezz) 0 + l dEzz Iz dEzz a0 22s ( )

I, I,
we have by eqs. (18) and (19) for the case of a gas of axially symmetric
molecules
]

D(Ezz):Do{ 1— ST [3(1 —cos2p+Dy)+ (14 14x~1) Do cos?¢] Ezz}, (21)
with
[ L] 32
| I Jrao 3x2 4 (5 + «2) cosep
denoting the depolarization ratio of the light scattered in the absence of an
external electric field (E,, = 0).

If, in particular, the electric vector of the incident light beam oscillates
in a plane parallel to the Z-axis (¢ = 0), eqs. (21) and (22) become

Do = (22)

20
D(Ezz) = D(]{ 1 — -217]? (2 + 7K-1) D()Ezz} 5 (23)
D — 3x?2 4
"= 5gda .

Egs. (21) and (22) undergo extreme simplification with the plane of
oscillation of the incident beam parallel to the Y-axis (p = 90°), i.e. when
conditions are as shown in fig. 15. Indeed, we now have Do = 1 and

20
D(Ez) =1~ — Eea. (25)
Here, the change in depolarization ratio due to the electric field gradient is
seen to depend directly on the ratio of the quadrupole moment and AT.
Thus, eq. (25) provides a simple, direct method of measuring the value of the
quadrupole moment of the molecule and of determining its sign.
If the incident light is non-polarized, cos2p has to be replaced by % in
eqs. (21) and (22), yielding

0 |
— —_— -1
D(Ez) Do{l i B 70+ 270 Dol Ere (26)
612
Do=-—a- 27)

Eqs. (24) and (27) are the well-known Gans-Cabannes formulas?).
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Let us now consider light scattering by a gas consisting of spherical
molecules, and assume observation to be carried out at an angle ¢ with the
direction of the incident beam. Eq. (15) now yields

I,= (—2}71>4a—2g;—0 sin2p cos2y, (28)
I, = (%)4 “_21}]\%{3{ 1 + ~§ L., }cosz(p, (29)
and, by (20), we have
D(E) = <1 — S— Ezz> cos—2g sin2p cos2d. (30)
If the incident light is non-polarized, this yields the formula
D(Ey) = <1 — S—Ezz) cos2d (31)

admitting of direct determination of the hyperpolarizability B induced in
the spherical molecule by an electric field gradient.

§ 4. Rayleigh’s ratio. Rayleigh’s ratio or the scattering ratio is defined
as
Iz + 1) Rip .

S = ;
NI,

(32)

herein, p = N/V is the number density of the scattering gas. On substitution
of (28) and (29) herein, we obtain, for molecules having the spherical
symmetry,

27 \4 I . B 1
S(Ez) = (T) a2p 1 sinZ2p cos?¥® + {1 + —- Ezz> cosle I . (33)
o

For non-polarized incident light and perpendicular observation (¢ = 90°), eq.
(33) reduces to

. B
S(Ezz) = Sﬁs (1 + ? Ezz> ’ (34)
with
‘ 27 \4
si=1(2) o @)

denoting Rayleigh’s ratio for isotropically polarizable molecules scattering
at zero external electric field. On rewriting eq. (34) in the form
SB(E) — S§ _ B

2 T _ 2 g 36
Sis « (36)
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we see that measurement of the relative change in Rayleigh’s ratio produced
by an electric field gradient yields directly the value of the hyperpolariza-
bility B of a spherical molecule, since its mean polarizability « is generally
known from molecular refraction.
By (18), (19) and the definition of eq. (32), we have for the quadrupolar
gas
2n

. 206 |
—1f_ 2 2 2 2 — 2
S(Ez) ——%< 7 > o Plék + (5 + «2) cosZp T (7+ 2x) cos (pEzzj. (37)

For natural light cos2p = 1, and

2x@
35kT

S(Ez) = Sf)s{ 1+ 1342 4 (7 4+ 2«) Ezz}, (38)
whereas, for polarized light of which the oscillations are parallel to the
Z-axis,

2@

S(Ez) = 25}',3{ I+ Zx2 + ST

(7 + 2x) Ez } (39)
For incident light oscillating in the plane of observation (p = 90°), eq. (37)
yields

S = 125ik2. (40)

In this particular case the Rayleigh ratio is seen to remain unaffected by
the field gradient. This is so because, by eqs. (18) and (19) at ¢ = 90°, the
contributions to the components I, and I, from the latter are equal but of
opposite sign, thus cancelling out.

Eqs. (23), (26), (38) and (39) are seen not to depend on the molecule’s
quadrupole moment & alone, but to contain moreover the anisotropy of
polarizability « which, obviously, can always be determined from Kerr’s
constant or from eq. (24) or (27).

One may consider eqs. (12), (15) and (16) for cases described by various
other conditions, possibly even better adapted to experimental investigation.
E.g., the incident beam might propagate along the Y-axis, parallel to the
axis of the condenser 1(b), with observation taking place in the XY-plane
or in a plane forming some angle with the latter.
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APPENDIX

Expanding the right hand side of eq. (8) in powers of E,, and on taking
into account (10) and (I11) we have, to within terms linear in E,,,

2n 4 NI()
1w = ()
0

+ Y(oayBpo:en + xpoBay:en) Manpgeyes(keky — 1ein)> Eqp 4

{ auygalNargeyes) -+

1 ..
-+ T ouy0ipo® ey [ Mampeyes(Reky — tely)> —

- <%0¢"ﬁ6760><k5kﬂ — igin>:l Ezz -I_ e }. (A.l)

In the expansion, the respective products of the components n4, €4, 74 and
ko have still to be averaged over all possible directions of the unit vectors
n, e, i and k; this yields

(otgy = <kakp> = }0ap,

{Manpeyes> = 312(2 — (1 -€)?] dapldys + [3(n - €)2 — 1](day0ps + dxadsy)},
{mampgeyeskeky) = 51:{2[8 — 5(n-e)2 — 5(n-k)2 — 5(e-k)2 +

4 8(n-e)(n-k)(e-k)] 6upbysdey + [—5 + 4(n-e)2+ 4(n-k)2+ 1l(e-k)2 —

— 12(n-e)(n-k)(e-k)] dap(dyedon + Opndoe) +

+[—544(n-e)2+ 4(e k)24 11(n-k)2— 12(n-e)(n-k)(e k)] dys(0nedan +
+ Oanbpe) + [—5+ 4(e k)2 4(n k)24 11(n-e)2 — 12(n-e)(n-k)(e-k)] X

X Oen(Gaydps + Oaslpy) + [2 — 3(n-e)2 —3(n-k)2 — 3(e-k)2 4

+ 9(n-e)(n-k)(e-k)][xy(0gedon + dpndoe) +

~+ 800(0pedyn + Spndye) + Oue(Spydon + yndps) +

+ an(Opydse + Oyedps) ]}, (A.2)
where d,5 is a unit tensor whose components are unity for « = 8 and zero
for « 7= B. Since the tensors ayp and @ug are entirely symmetrical, while
Bg:ye is symmetrical in the pairs of indices «, § and y, 8, and since 55045 =
= dysBag:ps = 0, we have, by (A.2),

Aayotgs{ Mot glylsy = 515{90](1052 + fz(sazxﬁ“fxﬁ - afxoco‘ﬁﬁ)}’
oayBgo:en{nangeyes(kekny — isin)> = o5t /81(aaaBay:ay +

+ Boc(x:ﬁv“ﬂv) + (3g2 - Zgl)(3°‘0¢ﬁBav:ﬁv — axaBgy:gy — Bazx:ﬁv“ﬂv)}x

oy gsOennangeyes(Reky — tein)y = i}g{42g1ddaﬁ@aﬁ —+-

+ (3g2 — 2¢1) (BotwpayOpy — 20an0isyOpy)}, (A.3)
wherein the functions f1, fa, g1 and gg are given by (13). Substitution of
(A.3) in the expansion (A.1) immediately yields eq. (12).
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