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Introduction

The theory of molecular polarization of dipolar gas mixtures, vapours and
infinitely dilute solutions is due to Debye [1]. The theory dealing with the solutions
of polar liquids was given by Onsager [2] and developed and modified by Piekara [3],
Brown {4], Work [5] and others. Harris and Brush [6] and Buckingham [7] discussed
the application of the statistical mechanical theory of dielectric polarization to dilute
solutions of polar molecules in a non-polar solvent

In the present paper, the theory of molecular polarization of multi-component
systems is discussed on the basis of the statistical theory initiated by Kirkwood [8]
and developed by others [91—[12]. It will be shown that the molecular polarization
of a multi-component system can be expressed as follows:
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where x; is the mole fraction of the i-th component of the system. Since P® is the
molecular polarization of the i-th component in the gaseous state, the first term
in (1) expresses the additivity of Py. The further terms of (1) responsible for the
deviations from additivity of Py, arise from the interactions between the molecules
in a dense system. The quantities P%” and P are here expressed, respectively,
by the correlation functions g{? and g% for pairs and triples of molecules of various
species and discussed separately for the cases of: I. Dipolar systems, II. Quadru-
polar systems and III. Octopolar systems.

In the case of dense systems, P& and PE™ cannot be reduced in general to a form
suitable for numerical calculations and for subsequent comparison of Eq. (1) with
experimental data. Only in the exceptional case of imperfect but not too dense
gases can we confine ourselves to pairwise interaction between the molecules for
which, by using an easy though cumbersome procedure, P& can be reduced to
a form adapted to numerical evaluations. For this case, P& is calculated for some
molecular models of interacting pairs of unlike molecules by means of the tensor
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formalism already applied by the author in other papers [13]. In particular, we shall
take into account the influence on P{? of anisotropy in the polarizability of the
molecules as well as of London’s anisotropic dispersion forces. It results that the
anisotropic-dispersional interactions contribute to P&’ much more than the dipole-
dipole interaction in the one case; albeit, they are still sufficiently strong in the
other cases not to be negligible in comparison with the dipole-dipole contribution.

General formula for the molecular polarization

Let us consider a macroscopic spherical sample of the isotropic medium of
volume ¥ (molar volume), whose electric permittivity is e. The classical statistical
mechanical theory yields for the molecular polarization

Q) Pty
e+2

the following general expression [11]:
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Here, M, is the a-component of the total electric dipole moment of the samplé
in the presence of the applied electric field E, and the brackets ¢ > denote the
statistical average at E = 0.

For a sample containing N =X N; molecules of various species we have
i
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where N; = x; N is the number of molecules of species i, and m®Y — the a-com-
ponent of the total electric dipole moment of molecule p of species i in the medium.

Substitution of (4) into Eq. (3) yields the molecular polarization of a multi-
component system as follows:
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The first term in this expression represents the distortion polarization P2, and the
second — the orientation polarization P%,. In certain cases, we are justified in
neglecting the difference between the low and high frequency distortion polariza-
tions. Making use of this, the first term in (5) can in good approximation be replaced
by the molecular refraction R,
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By (6), Eq. (5) may be represented in the form

(7) P m — 1" + P

where

N, N
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is the orientational molecular polarization.
The molecular refraction R, as given by (6) was discussed for dense mixtures
[14] and for imperfect gas mixtures [15] elsewhere. In the present paper we intend
to discuss only the orientational molecular polarization as given in general by Eq. (8).

Systems of non-polarizable dipolar molecules

For simplicity, we first suppose that the dipolar molecules of the system are
non-polarizable, m®? — @9 where u®? is the a-component of the permanent
electric dipole moment of the isolated molecule p of species 7. In this case, we obtain
from (8) the quantities P and PP of Eq. (1) in the form
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where gﬁ) (vp, Tg) is the correlation function for pairs of molecules of species i
and j, and ¢ = N/V. The configurational variable 7, consists of the variables r,
and wy determining the position and orientation of the p-th molecule, respectively.

In the case of systems the molecules of which are mutually independent (perfect
gas), Q2g? (7, 7¢) = 1, where Q = [ dw; hence, by integration over all possible
orientations of the molecules P%” =0, and Eq. (1) goes over into Debye’s [1]
well-known additive relation:
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For moderately dense systems, the binary correlation function can be expressed

as follows:

(12) 22 g%) (tp, 1)) =e & T {l+0()};

herein, wui; (rpg, wp, wg) is the total potential energy of interaction between a pair
of molecules of species i and j separated by a distance rpq.

By the foregoing expression, P& as given by Eq. (10) can be written

(13) PP =0 {BEP+ 0 (o)},
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wherein
4nN Uy Upg> 9p s 0g)
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is the second polarization virial coefficient describing the interactions between
two dipolar molecules of species i and j.

In the case under consideration here, the total potential energy uy; is given by

(0) T(m) @i __
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where ug5 (rpg) is the central force energy, and the last term — the dipole-dipole
energy with the tensor characterizing these interactions of the form

(16) T(pQ) = _—r;qs (3"1740 r?qﬂ—rjzaq 6uﬁ);

d,p is the unit tensor (unity for @ = § and zero for a # f§), and p # gq.

If the dipole-dipole energy in (15) is regarded as a perturbation in wu¢s (rpq),
we obtain from (14)
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where we have denoted
% Tpg)

(18) Toavg= [’ BT drpq.

Systems of anisotropically polarizable dipolar molecules

We now assume that the dipolar molecules of the system are anisotropically
polarizable in the electric molecular field F. Let o be the electric polarizability
tensor of the p-th molecule of species 7, so that mff’” is, at E =0,

g 4 t
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is the total electric molecular field at the centre of molecule p of species i as produced
by all the other molecules of the system. From (19) and (20), we obtain

- K
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By (19) and (21), Eq. (8) can be written in the form
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This expression may be represented in the form of Eq. (1) with P® given by (9).
The quantities PE? and P%® are in general of a very complicated form and in the
special case of correlation functions not dependent on the orientations of the
molecules are given as follows:
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where gf? and g{}; are the binary and ternary correlation functions, and
o ——(a“)+2a(“)/3 and % = (of — a?)/3a; are the mean polarizability and
the anisotropy of polarizability of an axially symmetric molecule of species i.

In the case of an imperfect gas mixture, by (12), (13) and (22), the second polariza-
tion virial coefficient is given as follows (terms of order a2 are omitted):
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The total potential energy wuy; is now given by [13]
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where the third term is the dipole<induced dipole energy and the last one — the
anisotropic dispersion energy (; is the frequency of electron oscillations of a molecule
of species 7, and /1 — the Planck constant).

With (26) for wug;, Eq. (25) can be written as follows:

BUD
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Here, the first contribution to B{” resulting from the dipole-dipole interaction is
again given by (17), and the second one, deriving from the dipole-induced dipole
interaction between isotropically polarizable dipolar molecules, by
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The last two terms in (27) appear only if we assume the dipolar molecules to be
anisotropically polarizable. These terms originate from dipole-induced dipole and
anisotropic dispersional interactions and, in the case of axially symmetric molecules,
are determined by

16707 i N 6u; 117
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Numerical estimations and discussion

If usj (rpg) is the Lennard—Jones potential of the form:

o\ 12 / i 6
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where the functions H, (yi;) are those tabulated by Buckingham and Pople [16],
and &;; and ¢y are force parameters having the dimensions of an energy and length,
respectively, and yg; = 2 (eg5/kT)1/2.

With expression (32), we are able to evaluate the contributions to B%? calculated
above, provided we know the values of ¢;; and o4; and those of the remaining mole-
cular parameters such as a; and u; of the gas in question. For the sake of simplicity
we shall carry out the evaluation for a one-component dipolar gas. In this case,
on the basis of the formulae (17), (28)—(30) and (32), we get

2 o—6d4y4N{ N d2 y4 544 y8 ” }
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where d = pu2/es3. The expressions (33) and (34) correspond to the result obtained
by Buckingham and Pople [11] for isotropically polarizable dipolar molecules.

For chloroform, the following figures are valid [15]: elk = 327°K, 0 = 543 A,
a=38.23x10-24 cm.3, » = — 0.09, and i = 1.05x10-18 e.s.u. Thus, on the basis
of (33)—(36), we get for T = 298°K:

a-aBp = 0.01 X10-24 cm.6/mol.,  4_{B, = 353 X 10~24 cm.5/mol.,
aZiaBp = —63X10-24cm.6/mol.,  ,u_giesBp = — 318X 10-24 cm.6/mol.

It follows from the foregoing evaluation that the contribution to Bp originating
from dipole-dipole interaction is entirely negligible as compared with the contribu-
tions from dipole-induced dipole and anisotropic-dispersional interactions. The
contribution from the anisotropy in polarizability amounts to about 18%, of the
value of ;_¥B,.
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For CH;F, using the values [15] e/k = 196°K, ¢ = 3.37 A, & = 2.6 X 10-24 cm.3,
% =0.11 and u = 1.82x10-18 e.s.u., we get from (33)—(36): :

d—aBp = 3270 X 10-24 cm.6/mol., i—i3Bp = 5906 x 10-24 cm.6/mol.,
4 5Bp = 1295 10-24 cm.6/mol.,  ,n _gispBp = 2408 X 1024 cm.6/mol.

In this case, the main contribution to Bp arises from dipole-dipole and dipole-
induced dipole interactions; nevertheless, the contribution of the anisotropic-
dispersional interactions is not negligible.

We conclude that the influence of the anisotropy in polarizability and, in parti-
cular, of the anisotropic-dispersional interactions on the second polarization virial
coefficient can be quite large and cannot be neglected.
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