Vol. XXIII (1963) ACTA PHYSICA POLONICA . Fasé. 3

ON NON-LINEAR LIGHT SCATTERING IN GASES

By Stanistaw Kiericu
Polish Academy of Sciences, Institute of Physics, Poznan*
(Recewed June 11, 1962)

The present paper deals with non-linear scattering of light in gases, its intensity being given
by an equation ‘of the type I(F) = I;+I,F'2+..., wherein I, determines the intensity of free
light scattering (at F = 0) and I, accounts for the first perturbation of the scattered light as due
1o a strong external electric or magnetic field and to the oscillating electric field of the intense
incident light beam. It is proved on the example of a gas consisting of axially symmetric molecules
that, according to whether F is an external electric field E or magnétic field H, the quantity I,
is expressed by means of the Kerr constant or Cotton-Mouton constant. In the case of light scat-
tering by a light beam of very great intensity, I, is expressed by means of Buckingham’s con-
stant. From the equation for I(F), expressions for Rayleigh’s ratio S and the depolarization ratio
D are derived, discussed for some special cases, and evaluated numerically for several gases.

1. Introduction -

A gas whose molecules have to some extent undergone the ordering influence of a strong
electric or magnetic field can be generally expected to scatter light otherwise than one whose
molecules are free and present random distribution. For the case of a gas of axially symmetric
molecules with linear dimensions small as compared to the light wavelength, the problem
was considered by Rocard (1928). The effect of a strong electric and magnetic field on the
depolarization ratio was recently calculated by Andrews and Buckingham (1960) for the
case of a gds possessing molecules of arbitrary symmetry. In addition to the effect of molecular
orientation as dealt with previously by Rocard for axially symmetric molecules, Andrews
and Buckingham took into account in their theory the effect relating to the hyperpola-
rizability of the molecules, as produced by the electric or magnetic field: In dense systems,
both these effects stand in' conneetion with the angular correlations of the molecules (Kie-
lich 1963). o

In the present paper, we shall first calculate the effect of a strong electric or magnetic
field on the intensity of the Raylelgh* light scattering in gases. We assume for simplicity
that the molecules are axially symmetric and that their polarizability is constant. Consequently,
we shall not consider the effect of hyperpolarizability (which was computed in an earlier
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paper (Kielich 1961) for the case of spherically symmetric molecules). Such a simplifi-
cation is justified owing to the molecular hyperpolarizability effect being negligible in the
case of anisotropic molecules, as compared with the effect of molecular orientation which
plays the essential and decisive réle. The situation here presents a full analogy with what
we encounter in the case of electric or magnetic birefringence, as results from the classical
theory of Langevin (1910) and Born (1918). From the equations for the intensity I, formulas
for Rayleigh's ratio S and the depolarization ratio D are derived and discussed for several
special cases.

As shown by Buckingham (1956), an optically anisotropic molecule undergoes orienta-
tion also in the oscillating electric field associated with a light wave, so that the gas becomes
birefringent. Hence, a scattering gas illuminated by a very intense light beam should be
expected to produce additional, non-linear light scattering as a result of the orientation
of its molecules. For this case, an equation accounting for the intensity [ is derived in the
present paper; this equation is then used for computing S, D and the turbidity 7.

By numerical evaluations, the non-linear variations of Sand D are in general insignificant
however, in strongly dipolar vapours or gases, they should be detectable in appropriate
experimental conditions. It would be of particular importance to measure the changes
in D, since these determine directly the numerical value and the sign of the electric or magne-
tic anisotropy of the isolated molecule.

2. Intensity of scattered light in the presence of a strong electric field

We consider a system of N identical, noninteracting molecules, and suppose that it
is in a strong uniform electric field of strength E. We assume moreover that the wavelength 2
of the incident light beam is large with respect to the linear dimensions of the scattering
molecules. The intensity of the light scattered by such a system is given as follows:

4
) = () g Comem om0 )

0

where m is the dipole moment induced in the molecule by the oscillating electric field é=
= Ae™ ¥ associated with the incident light wave, n — the unit vector describing the
vibration of the scattered light transmitted by the Nicol prism at the point of observation
separated by a distance R, from the origin of the scattering system, and R, - % = 0. The
brackets ¢ D¢, g denote the statistical average in the presence of the fields € and E,
and the asterisk — the complex conjugate.

In the case of axially symmetric molecules, the dipole moment 72 can be represented
as follows:

m =a-¢ = a{(l—x,) a+3x, (a-s)s} Ade~2"", 1))
with the quantities

1 a;— o
@ = (a+2ay) and x,,:“Tl 3)
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denoting the mean optical polarizability and the anisotropy of the optical polarizability of
the isolated molecule, respectively; ) is the polarizability along the axis of symmetry
and &, — the polarizability perpendicular to that axis. The unit vectors 8 and @ have the
directions of the axis of molecular symmetry and of the amplitude A of the oscillating electric
field 6_: respectively.

On substitution of (2) in Eq. (1), we obtain for an assembly of axially symmetric mo-
lecules

27\ * aZNA2
I(E) - (7”) R (@ 4 2x, e m) (@ ) (m - 5)— (@ )]+
0
+xz[9(@- s)2(n-s)*—6(a-n)(a-s)®m-s)+(@ ng. )
Here, the statistical average in the presence of the external electric field E is defined by
U(r, E)
Qe T dv
(D>p= T UmE » ©®)

fe kT dr

u(t, E) is the potential energy of the molecule at configuration 7 and field strength E, k —
Boltzman’s constant, and 7'— the absolute temperature.

For a molecule having the permanent electric dipole moment w and electric polarizability
tensor of

1
u(t, E) = u(z, 0)—p -E—-z—E ot E—..

= u(r, 0)—u(e - s)E— %a={(1_x,,)v+ 3w (€ - S)T} EP— ..., ©)

where the mean electric polarizability a® of the isolated molecule and its electric anisotropy »,.
are defined analogously to (3), and e is the unit vector in the direction of the applied field E.

On expanding Eq. (4) in a power series in F and using the energy (6) we obtain, to within
the second power of the electric field,

IE) = I,+ EE? +..., ()

wherein

4 277 42
I = (2771) o (@ w20, @ - m) (@ ) - 9)> — (@ m)?+

+#[9<(a"s)*(m - 5)*> —6(a-n){(a-s)(n-9))+(a ]} )
is the intensity of the light scattered in the absence of an external electric field (£ = 0), and

I = (g;i) Eﬁz——;’%ﬁ,—ﬁ (30;' Koo + kﬁ;—) {2(a . n) [{(a-s)(n-s)(e-s)?>—

—(@-8) (- 9)) (e~ 9]+ % B(K(a" 8) (- 5)2 (e~ 87y —
— (@~ 82 (- 82 (e D) —2Aa- ) (((a-5) (n- ) (- 5> —
— (@~ 8) - 8)) (e 9D ©)
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is the first' non-vanishing contribution determining the influence of a strong electric field
on the intensity of the scattered light.

In the absence of external fields, all orientations of the molecule (strlctly, of 1ts axis
of symmetry 8) are equally probable, so that

@S- )> =5 @m, s> =,
(a9 - 8)2> = [142(a - my,
(@ s)n-s)e - 9 = = [@n) +2a- - o),

a-s)2(n-s)(e-s)?> = 1(1)5 [1+2(a- n)2+2(a e)?’+2(n-e?+

+ 8(a -n)(a-e)(n-e). (10)
With respect to the foregoing result for average values at zero external fields, the expres-

sions (8) and (9) become

4 ’ : |
Iy = (27ﬂ) tom (5wl m 3], an

e — 27 ac%uNA
“\ 1/ 105R2kT

+ 3%, [2(@ - m)?+ 3(a- €)2+3(n-e)?—6(a-n) (a-e) (n-e) —2]}. (12)

( wr ot ! ){z<7+zu¢)[ 3a-m)(@ e m-e)—(@ n+

The expression (11) for 7, is analogous’ to the result derived by Born (1933).

3. The effect of a strong electric field on Rayleigh’s ratio

We assume that the reference system X, X, X, is attached to the centre of the scattering
system, and the system X;X,X; — to the point of observation of the scattered light (see,
Fig. 1). Consider a primary parallel light beam travelling in the X,-direction with unit

X
a 7'}e :e , ?
: 1 Prad
) i ng”
| : . |
| ! X, I:
! Y 1
! ~S v )
' 0 S~ Ro !
: . ' ‘7 .
17 g o : ;
X, e ; 0 \ /Xz
X4



325

. . 1 . . .
electric vector @ vibrating in the X; X; — plane. The light scattered is observed in the X, X,-
plane (plane of observation) at the angle 9 with respect to the direction of incidence. In this
case the unit vectors @, » and € are given by
a = ai; + agl, n = nyi, + nyi,
e = et + eyly + eqly,
where i, 4y, &, and iy, iy, 15 are unit vectors in the X%, X X; Iand Xy, X, X:; directions,
respectively. By these equations we have, since & * iy = &, - iy = cos 9,
a: n = amn;-+an cosd, a-e = ae +aye,,
N+ @ = nges + n,y(e; cos F—e, sin 9), (13)
where & is the scattering angle.
In the case when the incident light is unpolarized, and if observation is effected without a
Nicol prism, Egs. (11) and (12) should be averaged over all directions of the unit vectors @

and » in the planes perpendicular to the propagation direction of the incident and scattered
waves, respectively. Since by (13)

T 1 PR 1 2 2
(a-n)? = 1(1—1—0052 P, (a-e = §(e1—|—e3),
-1 ]
n-e?= 7 [e2+ (e, cos F—e, sin 9)?],
1 )
(@a-n)a-en-e = 4 [eg—l— (e, cos P—e, sin H)e; cos 9], (14)

we obtain from (11) and (12)

s (27\tarNa? . 2 o L2
I =2, = (7) TR {51+ cos* ) + (134 cos? &) %2}, (15)
—  [2a\* aK,nA?
() =2I5= (7) 287 K3 {(7+2%,) [(3e3 — 1) +(3e} — 1) cos? & —
— 3e,e, cos D sin F] — 33, [(3e2 — 1) cos? &+ 3eye, cos P sin 9]}, (16)

where in Eq. (16) we introduced the molecular Kerr constant K,, given by the Langevin-Born
formula
K, 4N (

_ A
= Toh e 3af % o+ kT) . 17

For a gas consisting of isotrépically polarizable molecules, Eqgs. (11) and (15) reduce
to the well-known Rayleigh formula

27\ * a2N A2 n2(n?—1)2V
I,(®) = (7"-) 2 (1+cos? 9) = —W
C ‘ 0

‘2 2 ) . «
2R3 (1+ cos? &) A2, (18)
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wherein use was made of the Lorentz-Lorenz formula for the refractive index of a gas:

n?—1=4n —];— o = 4mpa. (19)

Rayleigh’s ratio or the scattering ratio for the case when the light scattered by a gas
of volume ¥ is observed perpendicularly to the direction of incidence (& = 90°) is defined as

_ 1(90°) R

S = g (20)

In the presence of an external electric field this definition and Eqgs. (15) and (16) yield

S(E) = So+55E%+ ..., 21)
Here, S, and S§ are of the form
So = Sis (1 + —lsi %2) , (22)
. SeKn 2 .
S¢ = P (1 + = xa,) (3e2—1), (23)
where
W mp2—12 1 f2m\*
50_—22T“§(7)“9 @4

is Rayleigh’s ratio for isotropically polarizable molecules of a gas.

4. The effect of a strong magnetic field on Ravleigh’s ratio

Let us now consider the case of light scattered by a gas in the presence of a strong
magnetic field H. The potential energy of a diamagnetic axially symmetric molecule in the
field H is given by the equation

1
u(r, H) = u(r, 0)— 2 1{(A—2) + 3, (h - 8)*} H2— ..., (25)
where h is a unit vector having the direction of H, and
_1 _ a2
r =732 m= "5 (26)
are the mean magnetic polarizability and the anisotropy of the magnetic polarizability of
the isolated molecule, respectively.

If the electric field E of Eqs. (4) and (5) is replaced by the magnetic field H, we obtain
analogously to (7), when the energy (25) is used,

IH) = I,+ H2 + ..., 27
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where I, is again given by (11) and If is of the form

I = (2”) LA N (o7 4 2 3@ ) (@) (m - ) — (@ m)?) +

1] T3SREET
+ 3%, [2(a - )2+ 3(a - h)?+3(n - h)>—6(a - n) (@-h) (n-h)—2]}. (28)
By the definition of Eq. (20) and with Eq. (27) we obtain
S(H) = So+ SEH2+ ..., (29)

where the contribution deterniining the effect of a strong magnetic field on Rayleigh’s ratio
is given by

‘ SisC,, 2
S = o ( 1+ = x,) (3h3 — 1), (30)
with
4a N
Cm Sk]' “X MZ%Z (31)

denoting the molecular Cotton-Mouton constant of a gas, as resulting from the Langevin
theory (1910).

5. Nonlinear change of the depolarization ratio

The depolarization ratio is defined as
D=, (32)

where [ and I, are the intensity of the scattered componenis vibrating parallel and per-
pendicularly to the plane of observation, respectively. Substituting the expressions (11), (12)
and (13) in Eq. (7) and assuming n; = 1, ny = 0 for the I;, component and n; = 0, n, = 1
for the /|, component, we obtain by the definition of Eq. (32) for the depolarization ratio in
the presence of an external electric field

D(E) = Dy+ DyE? + ..., (33)
wherein

5af cos? & + (3+ af cos® P) x2
5aZ+ (3+ a?) #2

Dy = (34)

is the depolarization ratio at zero external field and

De 5K,
2~ 28rNa[5ag+ (3 + ad) #2]

— €5 cos ¥ sin ¥) — a? cos® ] + 3x,[2(a? cos? & — 1) + 3(a,e; + azey)? +

{2(7 + 2x,) [3(a2e, + aiase;) (e cos? & —

+ 3(ey cos & — e, sin 9)% — 6(ale; + a,aze;) (e cos? & — e, cos B sin F)] —

— 2(7+ 2%,) Dy[a§(3e] — 1) + 3ayaqe,e5] — 3%,Dy[3a2e? — (3e2+2) (a2 —1)]}.  (35)
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If the light scattered is observed at an angle of ¢ = 90°, we obtain from (34) and (35),
when the incident light is plane polarized with its electric vector vibrating
(i) parallel to the plane of observation (a; = 1, a3 = 0),

15K
— e m 2 __ p2

Dy,=1, Dg BreNarr, (€2 —e?), , (36)

and (i7) perpendicular thereto (a; = 0, a3 = 1),

32
Do = 5 ae 57
D = Ky {3%4(3€2 — 1) + 2Dy(7 + 2%,) (3e2 — 1)}. (38)

277 2BaNa(5+ 4x2) 7° 0 @

For measurements at ¢ = 90° with an incident unpolarized beam, aﬁ = ag =14,a103 =0

and Eqgs. (34) and (35) yield

62
Do= 5570 (39)
5Ky
D = seaNas ey el t D) Bef —1) = 2Do(7+2xg) Be§ — 1} (40)

Egs. (37) and (39) are known as the Cabannes- Gans formulas for the depolarization
ratios of the light scattered by a gas at E = 0. Egs. (38) and (40), when written in explicite
form, are found to be identical with formulas derived by Andrews and Buckingham (1960).

From the foregoing considerations, the simplest expressions for the coefficients,

1) 1

Dy= g1, Di= i U4 =D, (1)
are obtained when the incident light beam is polarized with its electric vector oscillating in
a plane parallel to that of observation and when & = 90°. In this case, the change in D
due to the effect on the gas of a strong electric field directed arbitrarily is given with respect
to Eqs. (33) and (36) by the following simple formula:

15K,

D(E) — 1= 28 Nox,

(e2 — €3) E2. (42)
From this formula it is obvious that, if the signs of %, and K,, are the same for the scattering
gas, the sign of the change in D will depend solely on that of the function (see, Fig. 1)

g, = ea—e3 = sin? &, sin? p,—cos? ¥, (43)
determining the direction of the field E in the system of reference X;X,X;. In particular,
with E lying in the plane X, X, perpendicular to the plane of observation (g, = 90°), we have

1 for 9, = 90°,
g, =sin?§,—cos? P, =1 0 for 9, = 45°, (44)
—1 for 4, = 0°.
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Consequently, the change in D is negative if E is directed along the Xj-axis, zero if E
acts in the X, X;-plane at an angle of 45°, and positive with  in the direction of propaga-
tion of the incident light beam (X,-axis).

Since, in a gas consisting of non-interacting molecules, these scatter light independently
of one another, we can illustrate the conclusions to be drawn from Eq. (44) by the example
of a single molecule. The change in D, which with respect to Egs. (33), (36) and (41) can

be expressed as follows:
1 |
AD=D(E)—1= E (IéI —Ig-L) E2, v 45)

will now depend on how the external electric field orients the axis of maximum polarizability
of the axially symmetric molecule (or its dipole moment, if present). Clearly, with this axis
directed along Xj, we shall have I->T} and, by (45), the change in D will be negative; con-
versely, with the molecule’s axis directed parallel to the direction of propagation of the light
beam, I <l yielding positive AD; finally, if the axis lies in the X,Xj-plane and sub-
tends an angle 9, = 45° with the X,-axis, I} = I}l and 4D = 0. The signs of 4D as
discussed above change to the opposite if %, and K, differ in sign for the gas under
consideration.

In the presence of an external magnetic field, the formulas for D are derived similarly.
We shall restrict ourselves to writing the simplest one, which is the analogon of Eq. (42)
and results immediately from (27) and from the definition of Eq. (32):

115G,

D) —1= 287 Notst,

(h3 — h3) H2. (46)

On substituting the constant (17) with # = 0 in Eq. (42), and the constant (31) in
Eq. (46), and on assuming that both E and H have the direction of Xj, we obtain Rocard’s
formulas!

. 30t xg4e 9 ocﬂ — ozﬂ_ ”
DEYy—1=— T F2=— T k2, 47)

H 3x %, [2 Xl — XL 12
D(H)—1 = kT o kT T (48)

which allow to determine immediately the numerical value and the sign of the electric and
magnetic anisotropy of an axially-symmetric molecule.

6. Light scattering by an intense light beam

Similarly to Eq. (7), the intensity of the light scattered by a very intense light beam
is obtained in the form

IE) = I+ I,E2 + ..., (49)

1 Rocard’s paper {(1928) contains some insignificanl computational errors as a result of which his formulas
for D differ from Eqs. (47) and (48) of the present paper by a factor of 4/3 at the terms in E? and H2.
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where

(2= * adu2NA? 2 2
w-(3) FRrET 280 W e m) 3] ag 0

with (‘,%Adenoting the time mean square of ¢.
By (14) and (49), Rayleigh’s ratio for the light scattered at an angle & is given by

S(E, 9) = Sy(9) + Sy + ..., (51)
wherein
1.
So®) = & S5 {B(L+ cos? ) + (13 + cos? 9) 2}, (52)
SisB
Sy(®) = " {28(1+ cos? 9) + (17 + 5 cos? ) s}, (53)
with
da N
IR 2
B = pq @*% (54)

being the molecular constant of the optical birefringence or the molecular Buckingham
constant of a gas (see Buckingham 1956, Kielich and Piekara 1959).

On integrating Eq. (51) over the surface of the scattering sphere, we obtain for the
“turbidity” of a gas

2n n

7€) = [ [S(&, 9) sin ddddp — 7o+ T L, (55)
00
where
]'6 is 2
Tg = 5 Sy (1+ 2x3), (56)
and
2 Sls
Ty = 5 T @4 ). 57)

-In this case the depolarization ratio is given as follows:
D(€) = Do+ Dyl + ..., (58)
where Dy is given by (34), and

5B,
28aNx[5a2 + (3 + al) x3]

From Eqgs. (34) and (59) we have for the special cases
(@) ay =1, ay =0,

D, = {3%,(1 — Dy) + (28 + 5%,) (a2 cos? & — Dyal)}. (59)

5cos?2 &+ (3+ cos?d) x,,

32
5B, {32,(1 — 0) + (28 + 5%,) cos? 19}
84 Nax?

Dy = (60)

D, = (61)
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(#) a; =0, a3 =1,

332

0T 5 dnd (2

 5Ba{3%e — 47+ 2%4) Dy}
Dy = o NaG+ d) (63)

(iti) o — a} = %,

5 cos? & + (6 + cos2P) x>
Do = si TxE v, 9
D, _ 5Bn{6%(1 — Do) + (284 5x,) (cos® & — Dy)} 65)

2= 287Na(5 + 742) '

If the light scattered is observed perpendicularly to the direction of incidence, Egs. (60)
and (61) reduce to
Dy=1, D,=0. (66)

In this special case, D is seen not to be subject to nonlinear change.

7. Discussion

We shall now proceed to the numerical evaluation of the effect of a strong electric or
magnetic field on Rayleigh’s ratio and the depolarization ratio of some gases.
Let us represent Eq. (21) in the following form:

2
1+ — %
S(E) =Sy _ _Kn ( 7 u) 2 2
Sy 2nNoc( 13 2) (Bes — DE?, (©7)
14+ — %
5
or, if the anisotropy »x, of the molecule is very small:
S(Ey—S, Kn 2 .
S5 = 57 Na (3e3 — 1) 22 (68)

For carbon disulphide we have the following data: & = 8.75X 10724 cm3, %, = 0.37
and, for ¢t = 20°C, K, = 427x10712; by Eqgs. (42) and (67), this yields

D(E)—1 = 37x10712(c3—e}) E?,
S(E)— S,
L So
For an electric field of intensity E = 10® e.s.u. and applied along the Xj-axis (e; = 0,
e3 = 1) we have:

— 13 10-12(3¢} — 1) E.

=2.6x107%.

D(E)—1=—3.7x10"5 and “3@5199

0
In the case of nitrobenzene, ¢ = 12.9x 1024 cm?, », = 0.2 and K, = 11988x 10712,
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so that Eqs. (42) and (67) yield
D(E)—1 = 1380 10-12(ef—ed) E2 = —13.8x 104,

S(E) S =222 1071%(3ef — 1) E2 = 4.4x 1074,

So
The foregoing evaluations show that in the case of substances such as the vapour of
nitrobenzene the changes produced by a strong electric field in both D,and S should be acces-
gible to experimental detection. The situation is less favourable in the case of nondipolar
gases, the changes in D and S being insignificant, though detectable in appropriate experi-
mental conditions.
Analogously to (67), Eq. (29) can be rewritten as follows:

(l-i— 3 %
SH)—Sy  Cn 7%

= (3h3 — 1) H2, 69
So 2nNac(1+_1§ 2) s—1) (69)
5
or, in approximation:
S(Hg: CN (3h3 — 1) H2. (70)

Substituting herein and in Eq. (46) the data for benzene: », = —0.19, & = 10.3x 10~ ¢m?

and C,, = 335x 10717, we obtain

S(H)
So

Thus, the changes in D and S for benzene, as caused by a magnetic field of the order of
105 e.m.u., are of the order of 10—8, which is very close to the theoretical limits of experimental

possibilities. ,

D(H) —1 =—4.7x 107V7(h§ — h3) H?, = 8.4 x10717(3r3 — 1) H2
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