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By statistical mechanics, the molecular Kerr constant Ky of multi-
component systems is obtained in the form

Km= YxK+ Dx,KED + %xixjkar(ﬁjk)—k ey
1 ) 3

where the first term represents the additivity rule, while the subsequent
terms account for deviations therefrom. The quantities K&’ and K
responsible for these deviations are expressed by means of the correlation
functions gg?) and g,(ij;g for pairs and triples of molecules of various species,
respectively. 'The equation as derived for K, is applied to a two-component
system and discussed for some special cases.

1. INTRODUCTION

By the additivity rule, the molecular Kerr constant Km of the system as a
whole coincides with the sum of the molecular Kerr constants for the respective
components of the system. For a system of two components, the additivity
rule yields

Kn=x, K} +x,K®, )]

wherein x, and x, are the molar fractions of the components, whilst K’ and
K are the molecular Kerr constants of the solvent and solute, respectively.

In order that K of the solution shall be a strictly additive quantity, it is
required that the constants K{I’ and K{ of the components shall not depend
on the concentration. The fact is, however, that experimental work by Briegleb
[1], Stuart and Volkman [2], Otterbein [3] and others has irrefutably shown
that even in dilute solutions the additivity rule (1) is not fulfilled. Particularly
large deviations from the rule (1) in the entire concentration range occur for
solutions of dipolar liquids in non-dipolar solvents [4, 5], whereas in solutions
of non-dipolar liquids alone the deviations are less [6].

Although the classical theory of Kerr’s effect as given by Langevin [7] and
Born [8] and developed by Buckingham and Pople [9] is conceived for one-
component gases, it can be applied formally in accordance with the rule of
equation (1) to a mixture of perfect gases and to infinitely dilute solutions.

The earliest theories of the Kerr effect for very concentrated solutions are
due to Friedrich [4] and Piekara [10], and are based on the model of dipole
coupling proposed by Debye [11] and Fowler [12]; they deal with the case of a
solvent consisting of spherical molecules and those of the solute possessing axial
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symmetry and a large dipole moment (e.g. nitrobenzene)t. Buckingham applied
his statistical-mechanical theory of the Kerr effect [13] to a dilute solution with
no interaction between the solute molecules [14]. Le Fevre and Le Fevre [15]
investigated a number of dilute solutions and proposed a convenient method of
extrapolating the constant K to infinite dilution, utilizing the values of K&,
thus obtained for determining ; the anisotropy of the molecules of the solutes.
The present investigation is aimed at deriving a statistical-molecular theory
of Kerr’s effect for multi-component systems. This theory leads to an expression
for the molecular Kerr constant Ky, of a multi-component system in the form

Km=DxKD+ Yxp; KD+ Y xppne, KOO+, L L. (2)
3 B ik

The constants K contain only the respective molecular parameters determining
the electro-optical properties of the isolated molecules of the various components.
As the constants K& depend neither on the concentration nor on the density of
the system, the first term in equation (2) expresses additivity of the molecular
Kerr constant of the multi-component system. The remaining quantities
K@ and K" are expressed respectively by the correlation functions g and
gif,g and are non-zero only for a system presenting non-zero interactions between
the molecules. In this way, the second, third and higher terms in equation (2)
constitute a measure of the deviation from the additivity rule of Km. The
expressions for K@, K@ and K@ derived in the present investigation are
valid for molecules of arbitrary symmetry, the quantities K@@ and K@ being
applicable to all cases irrespective of the nature of the intermolecular forces
active in the system, provided these correlations are accessible to treatment by
statistical methods.

In particular, equation (2) is applied to the case of a two-component system
and discussed for some special examples. Also, the procedure whereby the
theory can be easily applied for explaining experimental results is expounded.
Moreover, it is proved that certain angular correlation parameters inherent in
K appear also in the theories of molecular light scattering, of the Cotton—
Mouton effect, and of the molecular polarization of multi-component systems.
Clearly this circumstance is of great importance for comparing the results yielded
by the theory and those obtained experimentally.

2. MoOLECULAR KERR CONSTANT FOR A MULTI-COMPONENT SYSTEM

Let us consider an isotropic medium in the shape of a large spherical sample
of refractive index # and dielectric permittivity e. At its centre we shall consider
a smaller 'sphere of macroscopic dimensions and volume V' (molar volume)
Assuming E to be the field strength of a d.c. homogeneous electric field in the
absence of the sample, the mean field strength Eg of the macroscopic electric
field existing within the sphere is, by classical electrostatics,

3
P ©)
1 In Debye’s model the dipolar molecule of the liquid is immersed in the electrlc ﬁeld
of a great assemblage of neighbouring molecules in almost regular array, resembling that of a
crystal. - Consequently, the molecule is not free to rotate, but oscillates to a smaller or
larger extent about an axis determining the direction of the molecular field. Piekara [10]
showed that, in order to interpret satisfactorily the experimental data, it is in some cases not
enough to take into account the Debye—Fowler coupling only, but that the coupling between
a given dipole and its nearest dipolar neighbour or next dipoles of its nearest neighbourhood
has to be distinguished and dealt with specifically.

Es=
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For the case considered, the molecular Kerr constant Ky, is defined thus:
2 2
5 (5) v (4)

T 2R\ E
with
n,—n, 1
K= Iln J.E_‘g (5)

being the Kerr constant as determined experimentally; #, and = . are the
refractive indices for light oscillations parallel and perpendicular to the direction
of the electric vector Eg, respectively.

By equations (3) and (4) we have the relation

54n?
= GEraperap )
whence the molecular Kerr constant can be computed numerically, provided
n, ¢, V and K are known experimentally.
On the other hand, the classical theory of electric birefringence based on
electrodynamics and statistical mechanics yields the following equation for the
molecular Kerr constant (the method by which it is derived is to be found in

references [9, 13, 16]):

K= eop ®M, 1/, &M, U
" 45 5P N\38 OE,0E, kT \” 38,0k, oF,
M, U ) _1 oM, 9U oU (7)
06,0E0E,) ' K*T®3&, 3E,E,/’
with the notation
€aprys= — 28050, + 308,855+ 385,05, ; (8)

8,p is the unit tensor; the summation indices «, B, v, & take the values 1, 2, 3
corresponding to the components along the axes X;, X,, X; of the reference
system. ‘

In equation (7), M, is the a-component of the oscillating dipole moment
induced in the sphere of volume V by the electric field & of a light wave, in the
presence of the d.c. electric field E producing the birefringence of the medium.
For the system at configuration 7, we can write M_=M,_ (7,E, &). Also,
U=U(r, E) is the total potential energy of the system at configuration + in the
electric field E. The brackets { ) in equation (7) denote statistical averaging
at zero external fields (£=E=0):

f ®(7, 0) exp { - __U(kT:’PO)} dr
fexp {— ——U%T}O)}df
As the general equation (7) is valid for an arbitrary isotropic medium, it can
be applied to a multi-component system. Assuming N= 3N, molecules of

(D)=

)

different species (IV; is the number of molecules of species i) to be present within
the sphere of volume V, we can write
Ni
M. => 3m® 9 (10)
i p=1
where m @9 is the a-component of the oscillating dipole moment induced in
the pth molecule of species i by the electric field & of the light wave, at E 0.
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Considering the sphere of volume ¥ not as part of the large spherical sample,
but in vacuo, we can write by analogy to equation (10)

oU - — ¢ (g, 1) -
T @

here, m®? is the B-component of the total electric dipole moment of the gth
molecule of species j immersed in the sphere acted upon by the electric field E.
On substituting (10) and (11) in the general equation (7), we have the
following expression for the molecular Kerr constant of a multi-component
system :
- Y Bm@i
Kn= ‘4‘3 5aﬂ:78<§p:zl agﬁaEyaEa k
am(p»i) amg% b)) 1 i Nj Nk am(p,’l:) )
- — o (@:3) gptrs ), 1
aéaﬁ aEa > " k2T wzlcp2=:14=1r§1 aéaﬂ e > ( 2)

Ni Nj 2m{?, %)
1 < 9*my m

38,0F,

3. MoLECULAR KERR CONSTANT EXPRESSED BY MEANS
OF THE CORRELATION FUNCTIONS

We assume the molecules contained in the sphere to be dipolar, anisotropically
polarizable and hyperpolarizable. Neglecting for simplicity the effect of mole-
cular fields on the optical and electrical properties of the molecules, we can
express the dipole moment components m{? and m  as follows:

m®) = {29+ BBOE + 3y B OB, Et. . 16 (13)
P =9 4 gBVE . ., (14)

pi denoting the a-component of the permanent electric dipole moment of the
pth isolated molecule of species 7, and o%?, ¥ the components of its optical
and electrical polarizability tensors, respectively. The tensors B&.» and
{9, account for the change in the optical polarizability of the molecule due
to the external electric field E, and are termed the hyperpolarizability tensors [9].

By (13) and (14), equation (12) yields Ky as expressed by means of mole-

cular parameters, in the form?

K= Zewi 33 185 + pp S > 3 QBLu
45 afiy bl B y8 kT aB: y

4 p=1g=1
(D, (2, 5) 1 RO ®,1) (¢, D k)
5 s s s 7,
+ala )+ s > S D Y ol g, (15)
ik p=1g=1r=1

By classical statistical mechanics [19], equation (15) can be put in the form
of equation (2), wherein the quantities K, K@ and K@ are given as
follows:

K@= [espen{ i + g7 CBED GO+ oy ay?)

1 ) ) )
+ PO (7, (16)

+ When proceeding from equation (12) to the specialized equation (15), in order to
avoid further complicating the already considerably involved problem, we have neglected
the long-range dipolar correlations accessible to a © continuum model ’ treatment and taken
into account inter alia by Buckingham and Raab {17] in their computation of Ky for pure
polar liquids.
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2
KD = G | [ oo{ 200009+ 2689, 0+ g i

+ aé% N ag,{;’“ + w7 (20:&% z)M(yp, z)u(aq,z) + 2“&%’”#2,"’ ])ng, @)

+ oc;%‘)pg?’ J)’ugq,a) + aé%J)Mgp,i)ﬂép,i))}ggjz)(fp’ .,-q) d.,-p qu, (17)
3
Kt~ _ TP €5 0p (B U@D Y1) L o(0,) (1 B) | (0,0)
m 135k2 T2 aB:yd \"ag H"y s o :U‘y s
+oc¥ék),u,§,p’i)pgq’j) )gg?,g Tps Ty Tp) A7y d7, dr,, (18)

where p=N/V is the mean number density of the molecules. In the above
expressions, g)(r,) is the ordinary correlation function for the molecules of
species 7, g2 (,, 7,) the binary correlation function for those of species 7 and j,
&3) (4, 74 7,) the ternary correlation function for those of species 7, j and &,
and so forth. 'The configurational variables 7, comprise the variables r, and w,
determining the position and orientation of the pth molecule, respectively.

Thus, the integral
[ry= i, [, =7
vooQ

extends over all possible configurations of the pth molecule.

In particular, if the system presents no interaction between the molecules,
the latter assume all possible configurations in volume ¥ with equal probability,
i.e. the correlation functions then fulfil the condition

QgD (rp) = VgD (s 7) = QgU(rpy 7 7,) = . .= 1. (19)
It is readily verified that this condition always implies the vanishing of the
quantities K and K{# as given by equations (17) and (18), so that equation (2)
reduces to

K= SxK®, (20)
where .- , m ; #m
o re . . . . . .
K= —15—{37'&2: a8~ Vin:pa+ BT (BB 1 — B g 1)
1 N N 1 . N
oo f)+ s Ol o)) (21)

is the molecular Kerr constant of the ith component of the ideal mixture. On
dropping the index 7, equation (21) becomes analogous to the one derived by
Born [8] and Buckingham and Pople [9] for a perfect gas.

Hence K, is seen to be a strictly additive quantity only for the case of a
mixture of perfect gases, i.e. if the configuration of a molecule does not statistically
depend on the configuration of the remaining molecules of the system. In
dense multi-component systems, as a result of correlations between the molecules
of a given component or between those of different components of the system,
the quantities K and K" are non-zero, and K, does not fulfil the additivity
rulet.

t Were we to take into account in (13) and (14) the effect of the molecular electric field
strength F due to the surrounding molecules, as well as the external fields & and E, addi-
tional terms would appear in the expressions (17) and (18), and moreover in equation (2)
new terms in higher powers of the molar fractions would arise. We refrain from con-
sidering this case here, as it leads to results that contain higher powers of the polarizabilities
o and a and are of a highly involved form. This effect is discussed by Mazur and Postma
[18] for systems consisting of identical non-polar molecules.
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If the system consists of non-dipolar components only, the quantities K&
vanish in our approximation of the theory, and K®, K@ can be expressed as
follows:

3
K9=20 58 0= g 2 o935, 1)}, 22)

s, t=1

. 2 3 . - - o r
K@= o 3 (oPa)+adaf?) f f (3 0082 600 — 1)g@ (7, ) drpdr,,  (23)

with 8¢9 denoting the angle subtended by the sth principle axis of the pth
molecule and the zth principal axis of the gth molecule, «, and a, being the polariz-
abilities in the directions of these axes.

If the molecules of all components are in general dipolar, presenting in parti-
cular symmetry with respect to the 3-axis, the expressions of equations (17), (18)

and (21) reduce to

. 47N 6 3 1%,
() — T el A e OLK Kok
Km 45 {571’{' ET /81"/31/“'1+ ET “z’ﬁxz( 3azKaz+ kT>}’ (24')

, 4N i
K@= 15—7;71 {[Bi" gilts T Bjrgsti+ 5T (ke gs + 5% wi Witk ]J sz

1 e 3 pi Ll 25
+ é 0K o 3ajKaj + ET, +ajKaj ;K g; + ﬁ Ie) ( )

" 47N
Kg,lﬂc) = 45%2 T2 (O('l'KaiV“]'lu‘k + a’jKaj“’kH’i + ak"akl"’i""’j)’]gi' (26)

Here, the following integral parameters have been introduced :
=t f f cos 00D (7, 7) dry Ay 27)
T5= A [ [ Geoston 1), ) drydry (28)

2
i = QPT/J‘J_[ (3 cos 80D cos §07 — cos 01)g 3 (7, Tg» Tr) dr,dr,dr,, (29)

accounting for the angular correlations of the molecules, 6@ being the angle
between the axes of symmetry of the pth and gth molecules of the respective
components. For a system consisting of non-interacting molecules, the cor-
relation functions are determined by equation (19), and the parameters (27)-(29)
obviously vanish.
The quantities

— o) —arff) - ap - af) - ngzs—lg(li1): 3 (30)
of 30(1’ 4 ai 3“:’ ’ B 3Bz

determine the anisotropies of the respective polarizabilities and hyperpolariz-
abilities of the isolated molecule of species 7, and

K

w=h e+ 20), = (e + 24,

Bi= %(B(sza? gt 2/3%): 3h YiT ﬁ)(?’i gg:aﬁ - V&Q: BB) = %’)’5236 (31)

its mean electro-optical properties.
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4. APPLICATION TO A TWO-COMPONENT SYSTEM
In the case of a two-component system, equation (2) becomes
K=, KD+ 2, K® + 22K + 2,0, K1) + 22K (22
+ KD + a3, KD + 30 62K (12D 4 3 K222 4 (32)
Let us consider a mixture of two non-dipolar components, the molecules of

component 1 being spherical, and those of component 2 anisotropic. In this
case equation (32) assumes the simpler form of

K=K+ 0K @+ K, (33)
where, by (22) and (23), we have ‘

‘ K(1)= %’TN'}/D (34)
3
K= sz 22+ L S s@am3s,— 1)\, (35)
(m kTs t=1 :
2 3
Ki® = 457;:) s:zu a§2)a§2)f f (3 cos 672 — 1)gl (7, 74) drp dry (36)

If, in partlcular the molecules of component 2 possess axial symmetry, the
expressions (35) and (36) reduce to

K@= 4;7;\7{5?’2 k‘)T Kok y2l05K g2 }’ (37)
Kgm ;ij\‘fazKazazKazJ 29» (38)

wherein the angular correlation parameter JII is given by equation (28) for
i1=f=2.

Let us now assume that the molecules of component 1 are spherical as before,
but that those of component 2 are dipolar and anisotropically polarizable.
Equation (2) now reduces to the form

Km =2, K0 + %, K@ + 22K E? + 23 K222 | (39)
with K{) determined by (34). The quantities K@, K(zz) K22 for the

dipolar component, in accordance with equations (24), (25) and (26) which hold
for axially symmetric molecules assume the form

K®= 4ZSN {5y2 7 Barcoatts + k3T %t <3azxa2 Z—z;,)}, (40)
Ken - %{z<ﬂzxﬂzpz + ,%amw%)%z

+a2Ka2(3a2K02+ ! T(Jgg}, (41)

K= I o i, (42)

with the angular correlation parameters JL, JI and JIL  derived from
equations (27)—(29) for i=j=k=2.

In the case of a mixture consisting of a non-dipolar component having
anisotropic molecules and an arbitrary dipolar component the quantities K(1D
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and K{'® in equation (32) vanish. If the molecules of either component
possess the axial symmetry, equations (24)-(26) yield

K(Hll) = 44”*;\7 {57/1 + ;T oAy, 1 A1Kyy }, (43)
K@= A;—’;]—; K@ikl ], ()
K(? = %{alkal <3a2Ka2 + %) + 3otgk 00,541 }Jg’ (45)
R T (#6)

with the quantities K@, K and K?? determined by equations (40)-(42).
On the other hand, in the case of a mixture of two components, K can be
expanded in a series in powers of (= x,, the molar fraction of the solute)

Ky=dg+ A+ A+ A+ . .= 3 A (47)
n=0

1 /o"K
== (C2n 48
4, n!( dx™ >z=0 (48)

of the expansion can be determined directly from the experimental data. The
coefficient 4, accounts for the properties of the solvent only, whereas the others,
Ay, Ay, A; . .. characterize the properties of the solutions investigated.

Utilizing equation (32), we can express the phenomenological coefficients (48)
as follows:

Ao = (fo)x=0,

the coefficients

2 0x*  Ox

_ (13 13  3f, 9

wherein the quantities
fo= K@+ K@+ 4.
fu= =K+ KO+ 249 - Ki0) + (K - Kgm) 4.
fo=K{P—2K(D 4 K@ 4 3(KMD 2K (112) 4 K@®Dy4, ..,
fa=—KQW+3KUD 3Ky gy (50)

are in general functions of the molar fraction x.

If K, is given by equation (39), the coefficients (49) assume the following
simpler form:

e (2B

Ay= KW, A =K®_K®),
aK(ZZ)
A=K 4= {TE ko] G)
ox z=0

In this special case, 4, is seen to be expressed directly by the constant K given
by equation (34) and defining the hyperpolarizability of the isolated molecule
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of the solvent only. The coeflicient 4, is expressed by the difference between
the constants K® and K1 determining the optical electrical properties of the
isolated molecules of the solute and solvent, respectively. Only beginning with
A,, Aj the coefficients are expressed by means of the quantities K2 and K(222)
Wh1ch are responsible for the angular correlations of the dipolar molecules of the
solute.

From the foregoing it is obvious that the phenomenological coefficients 4,,
Ay, Ay, A, . . . can always be expressed by means of the theoretically computed
quantities K&, K@ and K@ which, thus, become endowed with a well-
defined physical meaning in each case.

5. RELATED PHENOMENA IN MULTI-COMPONENT SYSTEMS

For dense systems, the correlation functions g2’ and g(3) have to be known
explicitly in each separate case in order that the angular correlat10n parameters
J3; Jif andJiII defined by equations (27)-(29) can be computed numerically+.
These difficulties can be circumvented in certain cases by means of additional
information derived from the study of other phenomena. Magnetic bire-
fringence is one of them, in considering which the molecular Cotton—Mouton
constant can be represented as follows [20]:

Cm= (n26+ 2 Ve= Zx CO + > x,00,CD 4, (52)
wherein 7
oy 2aN
€ = T {31 s+ 7 o~ a‘”xé’,})} (53)

is a constant determining the properties of the isolated 7th component of the
system, x{ being the magnetic polarizability tensor of the molecule of species
i, and 7. , the tensor of its optico-magnetic hyperpolarizability].

The quantity C{ in equation (52) is determined as follows:

3 . -
C&a)_m > (@D 4 oy f f (3cos2 00 — 1)g® (7, 7,) dr, dry.  (54)

8 t=1
On inspection, equations (23) and (54) are seen to contain identical integral
parameters

J) = ﬁ f f (3 cos? 60— 1)g(D(r,, 7,) dr,, d7, (55)

responsible for the angular molecular interaction in the system.

Another phenomenon whose constants contain the parameters (55) is that of
molecular light scattering. Here, the quantity Fanis referred to as the molecular
constant of anisotropic light scattering, which is related to the measurable
quantities D, the degree of depolarization of scattered light and R, the Rayleigh
ratio by the formula

1352417 RD
lom*(n®+2)21+ D’

+ Such computations can be carried out for various molecular models in the casc of
imperfect gas mixtures, when the quantities K19 and K1y,%® can be expanded in series of
virial coefficients according to the method proposed by Buckingham [13] for Ky of im-
perfect one-component gases.

T Equation (52), together with (53) and (54), reduces to the result of Born [8] and
Buckingham and Pople [21] in the case of a one-component gas and to Buckingham and
Pople’s formula [21] in that of pure liquids consisting of axially symmetric molecules.

Fanis = (56)
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is expressed as follows [22]:

Fants =2 2P0y + 20 Figl+ - - (57)
where
3
P = INGAQ -l = b N 3 adaf(B,=1),  (58)
8,t=1

3
Fih=10t 3 aafd [ [ (Geosbg0 - 1)gf0(r, m) drpdiry (59)
1

8,t=

From equations (23), (54) and (59), the integral parameters (55) can be
determined in principle from the experimental data.

In the case of dipolar systems, by equation (25), the quantities K& contain
the parameter (27) (in addition to the parameter (28), which is a special case of
(55) for axially symmetric molecules). The parameter Ji; appears neither in
the theory of the Cotton-Mouton effect nor in that of light scattering; however,
it appears in the theory of the electric polarization of dipolar systems. In the
approximation of the present investigation, the molecular polarization can be
written thus [23]

P

(60)
wherein v

4
(i) —
=" N<a+ 3kT> (61)
denotes the molecular polarization of the ith component of a perfect dipolar
mixture, as resulting from Debye’s theory [24], whilst the quantities

Pl(r’l’) 9kTILl p,]ffcos B(I’Q)g(z) q) d'rp qu 4‘.3;; MZ}L]JI (62)

determine the first deviation from additivity of P, due to angular correlations of
the dipolar molecules in the systemt.

All this proves that, with some approximation, the cumbersome work inherent
in the numerical evaluation of the angular correlation parameters J%, and JiI of
equations (27) and (28) can be avoided in the case of solutions of dlpolar sub-
stances also, by recurring to other phenomena such as polarization, light
scattering, or the Cotton-Mouton effect.

6. CONCLUSIONS

Thus, the present investigation proves the molecular Kerr constant Ky, to be
a strictly additive quantity only in the case of a mixture of perfect gases. In
dense multi-component systems (e.g. real gases or solutions of liquids) presenting
correlations of the molecules of different components of the system in addition
to correlations of molecules of the same species, the constant Ky, fails to fulfil
the additivity rule. Consequently, investigation on the deviations of Kp from
additivity can provide direct information on the nature of the intermolecular

1 It is noteworthy that, on applying (27) (or (62)) to the case of a one-component dipolar
liquid, the parameter appearing in Kirkwood’s theory of the dielectric permittivity [25]
is obtained immediately. Similarly, from (28) in the case of a one-component liquid we
can obtain the parameter derived by Anselm [26] within the framework of the theory of

Kerr’s effect for a non-dipolar liquid and of molecular light scattering in liquids (see also
refs. [13, 16, 22, 27]).
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forces acting between the molecules of different components, and on the structure
of the systems considered. This is all the more feasible as analogous data can
be derived from investigations of molecular light scattering, electric polarization,
and magnetic birefringence, where the additivity rule is generally not fulfilled
either.

An advantage of the theory proposed can be said to consist in the fact that the
molecular interactions are described by means of the respective correlation
functions, without recurring to the assumption of a special molecular model.
Moreover, the theory is relatively simple, at the same time being of a high degree
of generality, and with suitable assumptions is applicable to each special case.

The author wishes to thank Professor Dr. S. Szczeniowski for reading the
manuscript and for his discussions of some of the problems. The author is
indebted to K. Flatau, M.Sci., for the English translation of this paper.
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