Kielich, S. Physica 28
1962 1116-1123

MOLECULAR REFRACTION OF DENSE MIXTURES
by S. KIELICH

Polska Akademia Nauk, Instytut Fizyki,Poznan, Polska.

Synopsis

A statistical theory of the molecular refraction R, of dense mixtures is proposed.
R, is a strictly additive quantity only in the case of a mixture of perfect gases. In dense
mixtures (imperfect gases or liquids), as a result of correlations between the molecules
of a single component and between those of various components, the molecular
refraction R,, does not satisfy the rule of additivity. Deviations from this rule are
discussed for non-dipolar mixtures composed of isotropic or of anisotropic polarizable
molecules, and also for dipolar mixtures consisting of molecules generally assumed
to be hyperpolarizable in the dipole field of the other molecules of the mixture. The
theory is applied to the case of two component mixtures.

§ 1. Introduction. The theory of the molecular refraction of dense
mixtures is developed on the bases of the statistical theory of molecular
polarization of non-dipolar fluids initiated by Kirkwood?!). The theory
of Kirkwood was discussed and modified by Brown?2), De Boer ¢.a.3),
and others*). For simplicity, we shall not consider here the effect of molecular
interaction on the polarizability of the molecules as discussed by Jansen
and Mazur4) and by Mazur and Mandel3).

We consider a large spherical specimen of volume V' (the molar volume),
in a vacuum, containing N = ¥}; Ny unlike molecules; N; is the number of
molecules of species ¢ and the summation extends over all the components
of the system. The classical theory yields for the molecular refraction (or
Lorentz-Lorenz function)

nz — 1 .
Ry=———-17YV, 1
T pr 42 ()
the following general expression:
Ny am(p,z)
R ) , 2
" 2@‘ pzl 9E ( )

where m{? is the a-component of the dipole moment induced by the total
electric field of the light wave in the p-th molecule of species 7. The brackets

*) The original of Yvon’s paper {1937} is not available to us in Poznan.

— 1116 —



MOLECULAR REFRACTION OF DENSE MIXTURES 1117

¢ » symbolize the statistical average in the absence of an external electric
field (E = 0):

U
o) T kT d

@) = /2 ev(f) e ()
fe kT dr

U(r) is the total potential energy of the system when its molecules are in the
configuration 7. In the classical treatment, the configurational variables
7 = (r, ) are continuous and account for the positions (r) and orientations
(w) of all molecules in the system.

In a preceding paper®) the general equation (2) was discussed for quadru-
polar and dipolar liquid mixtures on the basis of Onsager’s model?).

In the present paper it will be shown that the molecular refraction of a
multi-component system can be represented in the form

Ry =3 legfL) + > xiijﬁfb") + xixjkaﬁff’“) —+ .., (4)
i i iik

where x; = N;/N is the mole fraction of the i-th component of the mixture.
The first term in (4) expressing additivity of R, was already derived by
Lorentz8). The second, third and further terms define deviations from the
rule of additivity of R, resulting from interaction both between molecules
of the same species and between those of the various components in con-
densed systems. In the subsequent sections, the quantities R and R{/®
will be discussed for interacting anisotropic non-dipolar and dipolar unlike
molecules.

§ 2. Systems of non-dipolar molecules. The dipole moment induced in the
p-th anisotropic molecule of species 7 is given by

mp = o0 (E, + FPO),  wf=1,23, ©

where «{%% is the optical polarizability tensor of the p-th isolated molecule
of species 7 and F{? the electric field at its center due to the induced
dipoles of all the other molecules of the system, in the presence of the
external electric field E. The molecular field F*? is given as follows

. N’ Y
Ff}”” =—33 Té";‘”mé‘“), (6)
i q=1
R a#*p
wherein
) -5 2
THo = — 7 (37 pga? pas — 7 pSu8) (7)

is the tensor of dipole-dipole interaction; £,y = r¢ — r is the vector con-
necting the centers of molecules p and ¢ (rp and r, being their position
vectors), and d,s is the substitution tensor (unity if « = § and zero when

o # f).
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From egs. (5) and (6) we obtain in good approximation (for comparison
see refs. 1 and 9):

. . Nj . . .
M = W VEy — %Y, aly TV Ey e 4

jg=1
qQFp
Nj Ny
YN 0O, (45T as) (8, k) ik
2 X g T HC SV TE e O, e e — (8)
ik q=1 s=1 :
qF D 8Fq

where k is the wave vector of the incident light.

With respect to the foregoing expression the following result is obtained
from the general equation (2):

Ni Nj
Rm _ { 2‘ <Z oc(" L)> 2‘ <E 2‘ a(p b)[(m) (q,y) e%k'rpq> +
T p=1 W p=1q=1
qFp
Ny N; Np . . .
+ XX T X o TEOG DT ey L (9)

Wk p=1¢g=1s=1
EXIE]

Assuming that the wave length is large with respect to the intermolecular
distance and using the method of classical statistical mechanics, we can
represent the successive terms of eq. (9) as follows:

> <2 a(p,z)> =p Z % foc(”’” (1)( ) dq-p,
i p=1
N: N;
Z <Z 2‘ a("")T(ﬂ’l) (u 1>> _ p 2 x@xj/f a(n,w] (1)(1) (D) Sf)(TIh Tq) dTp qu’

yoc
Y p=1¢=1
g#D
Ny Nj Ng
W, )T (Pa) (4, 7)T(as) (s, kN —
PIROIID DY %ol Tﬁy Oy T5¥ay™> =
ik p=1 g=1 8=1
qFDp 8#¢

= p? Z xixp [ [ a(n L)T(pq> <r1 7)T(m) ("’“g(f)(rp, 7q) d7p drg +

+ p3 2, xixgiy [ [ [ ol VTG DTS We @) 7y, 7q, 75) dTp d7g drs, ..., (10)
ik

where p = N/V is the number density of molecules of the medium. In the
foregoing expressions g{!’ is the ordinary correlation function for the mole-
cules of species 7, gf is the binary correlation function for pairs of molecules
of species 7 and j, g{¥) is the ternary correlation function for triples of
molecules of species 7, j and %, etc. The configurational variable 7, consists
of the variables r, and wj determining the position and orientation of the
p-th molecule, respectively. Thus

[drp = [dry [dwp = VO
14 Q

is an integral over all configurations of the p-th molecule.
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By expressions (10) we can represent eq. (9) in the form of (4), where
R, Rﬁff) and R are given as follows:

; 1
RY) =— P/ aly? gt (rp) drp, (11)
R = 0 ] (= T + 4ol o
+ a(q,j)a(p,i)a(g,i)) Té{;q)j‘éﬁ)q) + . }g(z) 'rp, ,,.q d’Tp qu’ (12)
R;;?k) — 3/‘// a(n L)j (pq) (q 7)[(11a) g; k)g(-i)(,rp, T, 7.8) drp qu de+ (13)

§ 3. Special cases. If the system presents no molecular interaction, we
have

Qg(l) — ng(z) — Q3g(3) . = 1,
hence R{’ = R{/® = ... =0; and eq. (4) becomes the well-known Lorentz
result8),
Ry, = E xiR(L) (14)

expressing additivity of the molecular refraction

4
R — = Na (15)

of the individual componcnts whose molecules possess the scalar and con-
stant polarizability o; = 3o

For isotropically polarlzable molecules, «p% = a;04p, eqs. (12) and (13)
reduce to

47
Rfﬁ” =73 aqog(oq + o) p2 [ "pq gu (rp, 1g) drpdry 4 .., (16)

4z
R — 3 agogop® [ f [{3(Fpg-Tgs)? — pq 43} X

X 152588 (rp, vy, 1) drp drg drs + ... (17)

Restricting ourselves to pairwise correlations, we obtain from the foregoing
expressions

. 47 . '
R = N Negog(oes + o) p /7, €ig(Tpq) AT g, (18)

where gij(rpq) is the well-known radial correlation function.

In the case of one-component systems, the expressions (16)-(18) are
identical with the one derived by De Boer e.a.3) for the molecular polariza-
tion of compressed non-polar gases.
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If the molecules possess the axial symmetry (the axis of symmetry being
the 3-axis), we can express the polarizability tensor %% as follows

oc;’l;’i) ES “iazxﬂ —|—- aiK1(3S§(p)S}(3p) — (Saﬂ), (19)
wherein the quantities
Ky =
define the anisotropy of polarizability of the molecules of species ¢, and
s®P = (s, s®, s{)) is a unit vector along the axis of symmetry of the p-th

molecule.
By (19), eq. (12) can be written in the form:

R = T siogp? [ {1 — )3 oty — 1) +
+ Brars(3 cos Op cos g — cos Opqg) 08 Oyg + (1 — ) (3 cos20y — 1)] 7,3 +
+ 2 + oy — oy — agrg) (1 — wq)(1 — xg) +
+ (1 — 1)) (2o + o + oy — ayeg) (3 cos2lp + 1) +
+ Bieirei(20 -+ 204 - ogre; + o) (3 cos Oy cos Oy — cos Opg)2 +
4+ (1 — r4) (2o + ay + ogrg — ogreg) (3 cos2 Oy + 1)] r;qﬁ + )
81 (7p, 7) d7p drg, (20)
where

sPsD = cos By, = cos bp cos By L sin O sin Oy cos(py — @p),
and 6,4 is the angle between the symmetry axes of molecules p and g,
p and 6, are the angles formed by the respective axis and the vector ry,,
while ¢, and g4 are the azimuthal angles.

If, in particular, the correlation function gi’ is independent of orientation,
we obtain from (20), by averaging over all possible orientations of the
molecules:

. 4n
R — = Npowofou(1 + 263) + (1 + 2600}/ 738 (ra) drpg.  (21)

For molecules of one kind (¢; = a; = «) this expression becomes identical
with the one derived by Mazur and Postmal0).

§ 4. Systems of dipolar molecules. In certain cases ,eqs. (9), (12), (13) or
(20) can also be applied to multi-component systems consisting of anisotropic
molecules with permanent dipole moments. However, in dipolar systems
whose molecules possess large dipolar moments, a strong molecular electric
field Fy generally exists, which causes a direct (nonlinear) deformation of
the molecules. In this case, instead of (5), we have the following expansion:
O = (B0 + BEOFEY + BGNFEOFEO + L YE, + FPY,  (22)

ofty.
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where %% and y&:%; are the deformability or hyperpolarizability tensors
of the p-th isolated molecule of species s.

The molecular electric field F{&*), existing at the centre of the p-th
molecule of species ¢ when an external electric field E is absent, is given
in the first approximation as follows:

Ny
FP9) = — 72 ;}1 THO ple? 4 ., (23)
QFp
where p{®? is the p-component of the permanent dipole moment of the
-g-th molecule of species j.
By (22) and (23) ,the total polarizability tensor of the p-th molecule of
species ¢ is given by (terms of order «f and «y are omitted):

om®o , 0.0) 3F(p )
] — 5% 0,4
- “gt v+ %yp

-3 2 ﬂ;ﬁ?T‘”"’ ((sq,y')_*_

3Ez aEx j g=1
q#DP
RERRL ) ) T ook
1 D, pq (q,9 DS 8.
? 2 E Z yzxx :yd j M T + (24)
ik g=1 s=1
qF#DP 8Fp

With the help of (2) and (24) the quantities R% can now be written as

R(”?') _ 2//{__ (p 1) (g‘,?) + /3(10,1) ﬂ;qa) +
13;%‘,7)”30 t)) ngq) 4 ;( (,1) (q,a') (p,i) +
+ a(q 7) (p,b) (q,y') -+ 1y;z; \ 1) /4,(,(1 7) (q 7) +
+ Syl 0 pP D) TEOTED + ..} g (rp, 7¢) drp drg.  (25)
In the first approximation, the anisotropy of polarizability and hyper-

polarizability of the molecules can be neglected, and the foregoing ex-
pressions yield:

. 47
R = 5P/ {ouog(oq + o) 7,0 +
+ $(Bius + piBs)(3 cos Op cos B — cos bpg) 7, +
+5 [y (3 0820+ 1) +y;u?(3 cos20p+1)] Yor+ -} 8 (rp, 7g) drp drg, (26)

where $; and y; are the scalar hyperpolarizabilities of the isolated molecule
of species 1.

§ 5. Imperfect gas mixtures. In the case of moderately compressed gases,
classical statistics yields for the pair correlation function3)

_ Wi3(*'pg, W, Wq)

Q%P (rp, 79) =€ *r {1 4 0(p)} (27)

where u;; is the total interaction potential energy of a pair of molecules of
species 7 and 7.
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With the help of this expression the quantity R can be written as
R = p(BY + 0(p)}, 29
where B{ is the second refractivity virial coefficient for two molecules of
species ¢ and 7.
For anisotropic molecules with permanent dipole moments and hyper-
polarizabilities we obtain by (25) and (27):

iy )
BY = o I~ (e 40 1
ﬂi‘;”éﬂi” z)) T(pq) + ( (0,7, (q7) gzo ,t) +
+ “;%7)a$ ”ocig 25) + 1yo(£ » %) /‘;(,q ])M(E(I 27) +
: )
(@,7) ,,(p, z) (p ) T(m)j‘(m) - Lj(r’;’f;__p = d d d 29
+ Zyoux /uy ) + } Tpq Wp Awg. ( )

The foregoing expression for B’ can be calculated in general for various
molecular models by the method used in the previous papers1l). For unlike
molecules possessing the axial symmetry these calculations of B{Y are per-
formed in ref. 12.

§ 6. Applications to two-component systems. In the case of a two component
system, eq. (4) assumes the form

Ry = 1R L xoR® 1 x2RUD L 2414, RUD L 42RED) 1 30
m m 1" 'm m 2% m

I1, in particular, the molecules of component 1 of the mixture are spherical
and those of component 2 non-dipolar presenting the axial symmetry, we
obtain by expressions (15), (18) and (20):

4 4

RO = Ngy, RO =" Ny, (31)
87

R,V = 3 N p [ 7,7 871 pq) drpg, (32)

4
RGP = Toqocgpz S/ {x2(3cos? 0y — 1) 73 +

+ 3[2(01 + a2 — aara)(l — ko) + rwofor + 20 + aarcz) X
X (3cos? Oy + 1)] 7,0 + ...} gB(rp, 7g) drp drg, (33)

4

RED — T”ag p2 [ [ {ral(1 — ra)(3 cos20p + 3 cos? O, — 2) +
+ 3k2(3 cos By cos Oy — cos Opg) cos Opg] 7,2 +

+ Joe[4(1 — k2)3 + 3ka(l — k2)(3 cos? 8y + 3cos, + 2) +

+ 6(2 + x2) k3(3 cos Op cos Oy — cos Bpg)2] 7,8 +.. . }gi8(rp, 7¢) drp drg. (34)
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We now assume that the molecules of component 1 are again spherical,
whilst those of component 2 are dipolar and, for simplicity, isotropically
polarizable. In this case B, B and B{Y are again given by (31) and (32),
whilst by (26) R{!?) and R(?? are of the form:

4

RGY = 5 PP [Hoea(en + o2) +
+ 36V1M2(3 cos? Og + 1) }”pq g12 7p, 7¢) d7p d7g,

4n
R2® — —pzfj {2037,.8 + Bapa(3 cos 6 cos Oy — cos Bpg) 7,

+ Ssveus(3 cos? Oy + 3 cos2 Oy + 2) 7,

Similarly, eq. (4) can be easily applied to more complex mixtures.

—

-} g%)(fp: 7q) d7p d7g.

(35)

(36)

The foregoing theory of molecular refraction proves that investigation
of Ry, In multi-component systems can provide new and interesting in-
formation on the forces acting between molecules of various species.
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