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From classical electrodynamics and statistical mechanics, an equation for the molecular
Cotton-Mouton constant C,,, is derived, of such generality as to contain factors of a microscopic
nature not taken into account hitherto in theories of the magnetic birefringence of diamagnetic
fluids. This general equation is discussed in detail for gases, non-dipolar liquids and dipolar
liquids. Moreover, the fundamentals of a theory of the magnetic birefringence of multi-component
systems, with application to gas mixtures and liquids in solution, are proposed. The radial and
angular correlations of the molecules of the liquids and their solutions are accounted for by
means of molecular functions of the configurational distribution.

I. Introduction

An optically isotropic medium, if placed in a strong homogeneous eleciric or magnetic
field, becomes birefringent with the properties of a uniaxial crystal whose optical axis is
directed along the lines of force of the field applied. Electrical birefringence was discovered
- by Kerr (1875), and magnetic birefringence — by Cotton and Mouton (1907). Notwith-
standing the fact that they have been so long known, both these effects still present consider-
able scientific interest, as they not only provide valuable information on the structure and
the electric, magnetic and optical properties of the isolated molecule, but moreover are
a source of data relating to the nature of the intermolecular forces and to the structure of
fluids. The present paper deals with the theory of magnetic birefringence i. e. of the Cotton-
Mouton effect.

Voigt (1908) explained magnetic birefringence (and electric birefringence, too) by
direct action of the magnetic field on the electrons in the atoms or molecules of the medium.
This constitutes the non-linear deformational effect referred to as Voigt’s effect. The
birefringence thus produced in the medium is extremely small, and is not easily accessible
to measurement; it reveals itself clearly in atomic gases or vapours only, as anomalous
magnetic birefringence at frequencies of the light wave near the absorption line.

In a great number of other liquids, and noteably in organic compounds, the numerical
value of the experimentally measured magnetic birefringence considerably exceeds the

(299)



300

one predicted by Voigt’s theory. This is adequately explained by Langevin’s theory (1910),
notwithstanding the fact that the latter was developed for the case of gases. According to
Langevin, the molecules of the medium present a degree of anisotropy of their electric,
magnetic and optical properties even when not acted on by an external field, i. e. they
undergo polarization to a different degree parallel and perpendicular to their symmetry
axes. If no perturbating factors, such as thermal motion, were present, the molecules when
acted on by an external magnetic field would align with their axes of maximum polarizability
parallel to the field vector, and the medium would become maximum birefringent. In
reality, however, the perturbating factors counteract total alignment of the molecules; as
a result, the observed birefringence is generally insignificant even in liquids, increasing
with the magnetic field strength and decreasing towards higher temperatures.

In general, the molecular orientational Langevin effect is always accompanied by the
second-order deformational effect of Voigt, which does not depend directly on the temper-
ature. A theory of the Cotton-Mouton effect in gases consisting of molecules presenting
arbitrary symmetry, and accounting for both effects jointly, was proposed by Born (1933)
and, subsequently, by Volkenshteyn (1951) and Buckingham and Pople (1956).

The first to attempt an extension of Langevin’s orientational theory to liquids were
Raman and Krishnan (1927); according to their theory, the molecules of the liquid possess
an effective electric and magnetic polarizability depending on the parameters of the aniso-
tropy of the electric or magnetic local field acting on the molecule. However, Pickara (1939)
proved that direct dipole coupling of the molecules is more essential in determining the
dependence of the magnetic birefringence of dipolar liquids and their solutions in non-
dipolar solvents on the temperature or concentration.

The theory of molecular orientational effects in liquids, as proposed by Piekara (1939,
1950), is based on the assumption of three kinds of coupling to which the molecules in the
liquid are subject. Coupling of the first kind is the rotational coupling introduced by Fowler
(1935) in his theory of the dielectric permittivity of material containing librating-rotating
dipoles and Debye (1935) in the theory of the dielectric permittivity of liquids. According
to the Fowler-Debye model, rotation of a dipolar molecule in a liquid is impeded by the
electric field produced by the very numerous molecules surrounding it in almost regular
array, as in a crystal lattice. Coupling of the second kind acts in a manner to bind the dipolar
molecule under consideration and its nearest neighbour so that they shall form a momentary
non rigid assembly of two. Finally, the third kind of coupling is when pairwise dipole assem.-
blies, if sufficiently strong, couple pairwise to produce double pairs. It is coupling of the
second kind that plays the predominant part in solutions of dipolar liquids in non-dipolar
solvents; at very high concentrations, coupling of the third kind comes to play a part too.

Peterlin and Stuart (1939) also proposed a theory of magnetic birefringence in non-
dipolar and dipolar liquids. Herein, in addition to anisotropy of the local fields, account is
taken of intermolecular coupling as computed in accordance with the F owler-Debye model.
A similar theory for non-dipolar liquids, basing on Mueller’s (1936) model, is due to Snell-
man (1949),

The theories of molecular orientation phenomena utilizing Debye’s and Mueller’s
model were critically reviewed by Frenkel (1946) and Anselm (1947). The latter proposed



301

to describe orientational interaction of non-dipolar molecules by means of the correlation
function g(r, w) having the properties of Zernike’s and Prins’ (1927) radial distribution
function g(r) generalized for the case of variable orientation w of the molecules.

The foregoing theories have this in common that they assume a special mechanism of
coupling between the dipolar or non-dipolar molecules; owing to this, they cannot aspire
to generality. Theories of the Cotton-Mouton effect in liquids, requiring no special models
of intermolecular coupling, were proposed by Buckingham and Pople (1956), and by Pie-
kara and the present author (1957, 1958). Albeit, these present a degree of generality still
insufficient for their providing the possibility of taking into account molecular factors other
than those already mentioned and likely to affect the magnetic birefringence of diamagnetic
fluids, such as i. a. the electric fields of the molecular dipoles or quadrupoles, and the hyper-
polarizability induced in the molecules by these fields.

In order that the influence of various factors of a microscopic nature on magnetic
birefringence may be taken into account, the present author proposes a general statistic-
molecular theory of the effect for an arbitrary isotropic diamagnetic medium. The theory is
then applied to non-dipolar liquids consisting in particular of spherical molecules, and to
dipolar and quadrupolar liquids; in addition to angular correlations, the immediate effect
of the permanent dipolar or quadrupolar moment of the molecule on Langevin’s orienta-
tional effect is considered. The theory of the magnetic birefringence of multi-component
systems with applications to gas mixtures and to solutions of dipolar liquids is also given.

2. General Theory

We shall consider an isotropic medium in the form of a macroscopic spherical specimen
of volume Vg, at the centre of which we place the origin O of the Cartesian reference system
X;, X,, X3, to be termed the macroscopic or laboratory reference system. We assume
a homogeneous magnetic field of strength H directed along the Xj-axis. Along X, and
perpendicularly to the vector H, a plane polarized light beam is incident. The electric
vector E of the light wave oscillates in the X;0Xj-plane and subtends the constant
angle Q with H.

In the case under consideration, we have the fundamental equation

-1 )

”7‘%1—2 E= —;L% (M. eSpy, @.1)
wherein n, is the light refractive index when the medium is acted on by external fields whose
vectors E and H form the angle £. Moreover, M™ is the dipole moment induced in the
spherical specimen of volume Vg by the electric field E of the light wave in the presence
of the magnetic field H, and e is a unit vector in the direction of E. The moment M ind
is a function of the fields E and H and of the variables I" determining the configuration
of the system.

Dy y in Eq. (2.1) denotes the statistical mean value of an arbitrary function of
state @ = @(I', E, H) of the system at configuration I" in the presence of an external
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electric and magnetic field. Classically, the configurational variables [' are continuous,
and classical statistical mechanics yields, at thermodynamical equilibrium,
_ ULEH)
f O E,H)e ¥ dI
{Poen = UTEH) - (2.2)
fe T oar

wherein U(I', E, H) is the total potential energy of the system in the configuration I" with
the fields E and H, k — Boltzmann’s constant, and T —- the Kelvin temperature. Integra-
tion in (2.2) extends over all values of the variables I" of the configurational space.

Let M¢ = M, E, H) denote the total electric dipole moment of the macroscopic
sphere at configuration I’ acted on by the fields E and H. As the total moment M consists
of the electric moment Mg = M*(I" ,0) of the sphere at zero external field strengths and the
induced moment M4, Eq. (2.1) can be put in the form of '

nh—1
n%+2

E = 57 (M= Mg) - €D 2.3

On expanding the right hand side of this equation in a power series in k£ and H, we
obtain, to within the second power of the magnetic field strength (see, appendix A),
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(2.4)
where
f Uy
DI, 0) e LA
(P> = ) 2.5)
f e * dr

is the statistical mean value of @ at zero external fields, and U(I, 0) — the potential energy
of the sphere at configuration I" and E = H =~ 0. The quantity
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determines the change in volume of the isotropic sample due to magnetostriction. Herein,
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#’ is the magnetic permittivity of the sample, p — the pressure, and Br=— T/l, ( %Lg> —
s Pir

the isothermal compressibility of the medium.

The summation indices o, 7, v and g in (2.4) assume the values 1, 2, 3 corresponding
to the vector or tensor components along the axes X;, X5, X, of the laboratory system of
reference. The quantities e, and A, are the coordinates of the unit vectors e and h in the
directions of the fields E and H, respectively; in the laboratory system, these coordinates,
being directional cosines, fulfill the relations

€y =hohy=1 and eh, = cos Q.

At zero electric and magnetic fields, all directions of the unit vectors e and h with respect
to X;X,X; have the same probability, so that the products of the coordinates e, and h,
appearing in the expansion (2.4) can be averaged isotropically . e. averaged with equal
probability for all possible directions of the vectors e and h, yielding

eser = hoh, =15,
eerhy by = 35 {100,,8,,+ (3 cos? 2 — 1) &,,,,.}, (2.6a)

where
Earivg = — 204, 0,,+ 30, D, 304,0,, (2.6b)

and 9,, is the unit tensor with components equalling unity for ¢ = v and vanishing for
GH#T. :
With respect to the foregoing result, the expansion (2.4) yields the following general
equation:

np—1 n*—1 1— Lk [‘?ﬂ — W —-1p +_I{_2_<__.92U _1veu 4
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L 5575 {10 85,8, + (3 cos? 2 — 1) Eovive) <9E,9H,,9H9

1 I2M; U oM, 92U 1 9M; 98U aU\
— =2 = = + = = ) H?, 2.7
kT \"9E.9H,dH, = JF, 9H,0H,] ' k®T? 9F, 9H, 9H,
with the equation
n?2—1 dm [OM;
n2r 2" 9V <9E,,> @8)

defining the refractive index of light at zero magnetic field strength.

Eq. (2.7) determines the effect of a strong homogeneous magnetic field on the refractive
index of an arbitrary isotropic medium. From (2.7), in a first approximation ng is seen to
be equal to the refractive index n as given by Eq. (2.8). In the second approximation, n,
depends on the second power of the magnetic field strength and also on the averaged proper-
ties of the medium and the thermodynamical state of the latter. The fact that n depends
on the angle £ means that the medium has become optically anisotropic in the magnetic
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field and is now characterized by different values of its refractive index for different direc-
tions of oscillation of the vector E with respect to H.

It is customary to define the optical anisotropy induced in the medium as the differ-
ence n—n, between its refractive indices for light oscillations parallel and perpendicular
to the direction of the magnetic vector H, respectively. The quantity n;—n, provides a meas-
ure of the magneto-optical anisotropy of the medium. The values of the indices n); and n
can be computed directly from the fundamental equation (2.7) by substituting £ = 0°
and 2 = 90°, respectively. This yields the difference between the optical refractions, as
resulting in an isotropic medium from a strong magnetic field, in the form

-1 ni—1_ & ( PM;,
nt 1+ 2 nf+2 45Vs """ \9E.9H,9H,

1 ( M, U  OM; U ) 1 aM; AU e>U>H2

— w\%3E, 08,58, T 5%, 9H,9H,) T WT¢ 9E, 9H, 94, 29)

Hence, the birefringence of an isotropic medium is independent of the magnetostric-
tion as given by Eq. (2.6).

The constant of magneto-optical birefringence C, known as the Cotton-Mouton con-
stant, is given as follows:

m—ny 1

C = P

(2.10)
where Hy is the mean macroscopic magnetic field strength existing within the spherical
sample. For a diamagnetic medium, Hy is practically identical with the magnetic field
strength in vacuo, Hs= H. As nj and n differ but little from n, the definition (2.10) can
be rewritten as follows:

(42t fai—-1 ni—1] 1
C="%2 Wtz A+9 B’ (@-11)
whence, by (2.9), we have
_ a2 (H) € < Sy +
= 270n% Vs \Hs| “** \9E,oH,0H,
1 (. 92M: . OM:OM! 1 OME | m aym
+ ﬁ(zaE, 5w, Mo T 3E, aHg) e or, M Me > 2-12)
with
M"T,E, H) = U(T,E, H) (2.13)

" 9L,
denoting the component of the magnetic dipole moment of the spherical sample presenting
the configuration I in the presence of the fields E and H.

Eq. (2.12) presents the general form of the Cotton-Mouton constant for an arbitrary
isotropic medium. If the latter is diamagnetic, i. e. if the magnetic dipole moment of the
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sphere vanishes in the absence of an external magnetic field, M™(I', 0) = 0, the general
equation (2.12) goes over into

_ a(n2+2)? (H\? ( My . 1oMg 9M,"‘>
\C = ~roma 7 \Bs] *v \9E. 00,00, T ¥T 9, oF,

(2.14)

3. Molecular Cotton-Mouton Constant

‘According to Konig (1938), we define the molecular Cotton-Mouton constant C,, as

follows:
R mf—1 nj-—1 14
Com {nf +2 nﬁ_—%—2 m2’ (3-1)

with V7 denoting the molar volume of the spherical sample.
The definitions of (2.11) and (3.1) yield jointly the relation

. 6n* (Hs\®

making possible the computation of the molar constant C,, from the experimentally meas-
ured Cotton-Mouton constant C.

On substitution of (2.9) in the definition (3.1), and by (2.13), the followmg equation
is obtained for a diamagnetic medium:

kil (ﬁi‘/—’ +_1_§’i‘,4£9M5">.
45 “"" \2E,0H,0H, kT 9E, 9H,

herein, the moments M¢ and M now refer to the molar volume V. Obviously, (3.3) could
also be derived from the relation (3.2) and Eq. (2.14).

The mechanism of magnetic birefringence can be explained within the framework of
the atomic-molecular theory of the structure of the medium. To this effect, the moments M *
and M™ of the macroscopic sphere, as appearing in the general equation (3.3), have to be
expressed by means of the respective moments relating to the microscopic properties of the
individual atoms or molecules. Thus, let the macroscopic sphere of volume V" contain N
(Avogadro’s number) molecules of one species. The dipole moments M? and M7 of the
volume ¥ can now be expressed as the sums of the dipole moments present therein:

Cn = (3.3)

N N
Mg =3 m®, M= mo, (3:4)
p=1 g=1
where m&® and m!™? are the components, respectively, of the electric and magnetic moment
of the p-th and ¢-th molecule of the specimen subjected to the external fields E and H.
Substitution of (3.4) in (3.3) yields the molecular Cotton-Mouton constant of a diamagne-
tic medium as follows:

N N N
7 k] mi(?) 1 om e(P) Qmm@)
Cn = g Forin <p=1 SEAHAH, T T X D ok ' ¢5)

r=1 g=1
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The p-th molecule immersed in the sphere is acted on by the effective electric field
E +F® and effective magnetic field H --G®. The additional electric field F® and magnetic
field G existing at the centre of the p-th molecule are given rise to by the remaining mole-
cules in the sphere, and should be dealt with microscopically. Moreover, we assume the
light wavelength to be considerably larger than the linear dimensions of the molecules, and
its oscillation frequency to lie below the electronic absorption band of the medium. On
expanding the electric moment 1*® in powers of the effective field strengths E --F®
and H+G®, we obtain in the case of diamagnetic molecules

P — P+ () + L ED + Ly FOED ) (E,+ ) ¢

orivgt s

+ 3 ED(H, + CP) (H,+ )+ 38, (E,+ FP) (H,+ GP) (H,+ CP) +..., (3.6)

wherein u® is the o-component of the dipole moment of the p-th isolated molecule,
and a{?) — the tensor of its electric polarizability. The tensors %), ¥y, , €2 and #2),,
define the non-linear deformation of the p-th molecule due to the electric or magnetic
field, and were originally introduced by Born (1933) in molecular optics of gases, and subse-
quently by Volkenshteyn (1951) and Buckingham and Pople (1955, 1956) under the designa-
tion of hyperpolarizability tensorsl.

The molecular electric field F® is defined to within dipole interaction by the following

equation (see, Kirkwood 1936):

N
ng) — Z Té‘,’“) m(f); (37)
g=1
qaFp
herein, the tensor
o —5 2 .
,[(qu) = 1 (3T pgs Tpge™ T5q057) (3.8)

accounts for interactions of the dipolar type, and 7,, is the vector connecting the centres
of molecules p and q.
The molecular magnetic field is defined in analogy to (3.7) (see, Stephen 1958):

N
GP = — Zl T4 mma, 3.9)
¢=
aFp

1) By (3.6), the tensor of the differential polarizability of the molecule immersed in the medium at zero
external fields is

Oms®) 1 1 SF®
< ® ® -
<—9 gx . o) + pR,FD) + 5 P FS PR + . ( Buy + mEE; }0. (3.68)

Thus, in spite of the fact that the electric field strength E of the light wave is small and insufficient for pro-
ducing non-linear polarization of the molecule, the existence of a (generally) very strong molecular electric
field F in the condensed medium leads to non-linear deformation of the molecule as described by the tensors
Boz:v a0d Y541y, . For this reason, we have introduced into Eq. (3.6) the terms ﬂ,(f?v F,Ep ) and —21~‘y<(,€):,,@ F ,(,p) Fép ),
which do not appear in the case of a gaseous medium.
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wherein, for diamagnetic molecules, the magnetic moment components are given as follows:
rn(P) (X(P) =+ E%r Fff’) Ez)m F(p) F(P) + ) (H, + G(tp)) +..., (3.10)

where x% is the magnetic polarizability tensor of molecule p.
From Eqs. (3.6), (3.7), (3.9) and (3.10), we have approximately

F(P) F(P) Z T(pq) (q)ﬁ ,+ Z Z T(Pq) a(q) T%r) (r) E . (3_1 1)

q#p 39&; :;élq

N
GS;P) _— Z (pq) X(rq])H + Z Z T(M)Xn) T(qr) (rl) HA . (3.12)
p Zprra
wherein

F® = Z TED 40 1 Z Z TEOGD Ty . (3.13)

qaép Z;é}l :752

is the electric field strength at the centre of the p-th molecule of the medium, at vanishing
external fields (F = H = 0).

In the case now under consideration, the configurational variables I" of the system
form a set of variables TV = (rN, ©™) describing the configuration of all V molecules present
therein. This set of variables 7V consists of the variables »™ = (1, 7, ... y) describing
the positions of the molecules, and of the variables @™ = (w,, w,, ... wy) determining their
orientations. The statistical averaging operation denoted by brackets { > in Eq. (3.5)
can now be defined thus

(D> — j f(b(rN) P® (77 dr, (3.14)
(n)
wherein
wU('rN)
e kT dgN-n
M) (pn) —. N—=?) (3.15)
PM(Tn) o
f .. f e *T N
™)

is the probability for a selected group of n molecules to present the configuration " =
= (Tgy - T,) = (4, ... '3 @y, ... ®,) independently of the configuration of the remaining
N-n molecules of the system. The probability (3.15) fulfills the normalisation condition

f---fP(")(t")dr”zl. (3.16)

In the case of random molecular distribution, as for r—>oo or T—oo (perfect gas),
the probability (3.15) yields

lim P® (77) = hm PO (77) = 1

lim @y (3.17)
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wherein

V= fdr,—..= [dr, 0= [do, = .. = fdo,

Henceforth, we shall utilize the statistical mean values of the respective sums of fune-
tions @(z") as given by the expressions

N
< ;@(11,)) — ¢ [ ®(z,) gV(x,) dr,,

ﬁ Tps T )> = @2ff¢(1 ’Tq) g(z)(rpa Tq) drpdtq’ |

mMz

N

Z D D(1y, T, 7,)D = 0° ffj (Tp T T,) 80 (T, T 7,) dTydr, dr, .o, (3.18)
—1 g=1g=1
i

Z

where g™ (") = " (", ©") are correlation functions of the configurational distribution,
related to the probability P®™ (1) of (3.15) as follows:

N!

00 = =1

P (77); (3-19)
herein, ¢ = N/V is the number density of molecules of the medium.
For a distribution of the molecules independent of their mutual orientation, integra-

tion of both sides of Eq. (3.19) extending over all orientations of the molecules yields the
correlation functions

") (re) = f f g™ (r", w") do” = —————— PO (r 3.20
£ (1) = (. 07) dor = oy PO, (3.20)
as employed and discussed by Kirkwood (see, Hill 1956) and De Boer (1949).

4. Non-dipolar Diamagnetic Fluids

We now proceed to a discussion of the general equation (3.5) for non-dipolar diamagnetic
fluids. In a first approximation, the contributions from the molecular fields F and G to
the expansions (3.6) and (3.10) can be neglected, whence

N N N
_ @ ) i oD 0
Cn = 45 Egring <le Norive + ET Z Z > (4'1)

Assume a Cartesian coordinate system X{? X X$) = (,Xs’)), a=1,2,3, to be termed
the molecular system, with origin at the centre of the p-th molecule. Similarly, the molecular
system (X(?), y = 1,2, 3 is attached to the centre of molecule . We shall now carry out
the transformation of the tensors al?, #®,, and {9 from the macroscopic coordinate
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system (X)) to the molecular systems (X$) and (X{?) by the formulas

o2 = PP a®), 1@ = 6@ 5D, 12, = 0D 0D BB y?) (4.2)

’ % Y, 06 de s Nov: wo 1/3 08 770,/3 ya* s

Here, the coefficients 0, ... %) of the transformation are the cosines of the angles sub-
tended by the axes X, ... X, of the laboratory system and the axes X7, ... X{’ and X,
.« X9 of the respective molecular systems. The directional cosines @, ... % fulfill the

conditions of orthonormality

whereas, for the directional cosines wf,‘;), wg%) and wfﬂz, . 09, we have the conditions

d,, wf}? wf,‘;’,) = w%,q), 0., w(}g w(gq(,) = wfg%q), . (4.4)

wherein wg’y") is the cosine of the angle between the axes X and Xf,’” of the molecular
system attached to the p-th and g¢-th molecule, etc.

By Egs. (4.2), (4.3) and (4.4), the following equation is obtained from (4.1) for the
molecular constant of magnetic birefringence (see, Piekara and Kielich 1958, 1959):

N

R n

o= 2 (X s 30— 22
p=1

N
DN R ). 6

YMz

Taking into account the definitions of Eq. (3.18), the foregoing equations go over into
: 1 o2 4B) g
Cm 45 Eaf: 'y& (naﬁ Vo + i kT 5 Xyd ) 4 (TP) dTP +

TR ef [ o 138 Bod? of” + 30E0 Wf? — 2003 0y0) @ (7, 79) dry drq} (4:6)

yielding finally

aN 1 .
Cn = 5 {377':’? s + 3Mapiga — 2Naaipp + T (3%ap Xap + 3%ap Apa — 20taa Xpp) +

+ % tap Ly f B2 P + 3050 0h? — 2845 8,5) £(Tpq) fzz,,q}, (4.7)
with the notation dt,, = dr,, do, do,.

In the case of a perfect gas, by (3.17) and (3.19), we have g(z,,)

5 » whence

o

d
U Xy [ [ Bwd? (Ufsp,sq) + 300 WFD — 2045 0y) deop doog _ 0. (4.8)

£2
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If, moreover, the tensors &, and yx,, are entirely symmetrical, and if the tensor 7,45 18
symmetrical in the pairs of indices «f and 6, Eq. (4.7) with respect to (4.8) reduces to

2aN 1

Cn” = 5 {3"7aﬂ:aﬁ — Nan:pp+ o (B%ap Yap — Fea Xﬂﬂ)}- (4.9)
The constant C,, was derived in similar form by Born (1933), Volkenshteyn (1951), and
Buckingham and Pople (1956)2. The first term herein, (3% ap:0p— Naa:pp)> BCCOUDES for the
temperature-independent  effect of molecular deformation, whereas the second term,
(Bpy Xap—%aa Xsp) (kT)-1, — for Langevin’s (1910) effect of molecular orientation, which
decreases towards higher temperatures. Outside the range of absorption of the substance,
the effect of molecular deformation is extremely small and can be neglected with respect
to that of molecular orientation, which predominates in the case of anisotropic molecules.

For a gas whose molecules possess the spherical symmetry, we have

Xyp = A0gpr Xop = XOups Naprys =ML 04p 05+ 30— 1) (0, 05+ B460py)s (4.10)
and Eq. (4.9) reduces to the Buckingham-Pople formula (1956)

a 2r
Ca® = N lmy — 1), (4.11)

wherein the coefficients #, and 7 account for the change in polarizability produced in the
spherical molecule by the strong magnetic field, in the direction parallel and perpendicular
to H, respectively. Eq. (4.11) is the molecular counterpart of Voigt’s (1908) deformational
theory: a gas consisting of spherical molecules becomes optically birefringent owing to the
anisotropy induced in its molecules by the deformational effect of the external magnetic
field. In gases consisting of atoms or of spherical molecules, Voigt’s deformational effect is
the only factor producing optical birefringence. Thus, Eq. (4.11) provides direct informa-
tion on the changes undergone by an atom or spherical molecule when in a strong magnetic
field.

If the axes of the molecular systems coincide with the principle axes of the molecules,
Eq. (4.7) assumes the form

3 .
27'617\[ 1
Co = —/TS— {anﬁ:aﬁ = Naa:p8 T 'ET Zl s Xe L?)ést — 1+
syt=

+o f (3 cos? 032 — 1) g(tpq) drpq]}, (4.12)

wherein 639 is the angle between the principal axes X® and X9 of molecules p and ¢,
respectively, a, and y, being their polarizabilities in the direction of these axes.
For molecules of the diamagnetic liquid presenting the axial symmetry, Eq. (4.12)

2) The constant C,, in the paper by Buckingham and Pople (1956) differs by the factor 1/9, and the tensor
Tapsys —— DY 8 factor of 2.
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yields the expression

2aN 18
Cn = = 30ap:ap — Nan:pp + 777 %0a X0, (L+ Ja)¢, (4.13)
45 ET ,
where
T4 = o [ (3 cos? 090 —1) g(z,,) dx,, (4.14)

is an integral parameter accounting for the angular correlations of the axially symmetric
molecules; 6®? denotes the angle between the axis of symmetry of molecule p and that of
molecule g. The dimensionless quantities introduced by Langevin

g — o O As—

O = —%;——1 , Oy =3 A1 (4.15)
are a measure of the anisotropy of the optical and magnetic polarizability of the isolated
molecule, wherein the polarizabilities in the direction of the symmetry axis of the molecule
are denoted by a3 and y3, and those in the direction perpendicular thereto -—— by a; and ;.
The quantities ‘

x = % (“3 +2“1)) X = % (13 +2X1) (4.16)

denote the mean optical and magnetic polarizability of the isolated molecule, respectively.

Eq. (4.13) with the parameter J, given by Eq. (4.14) is analogical with results of Buck-
ingham and Pople (1956). ‘

We shall take account of the effect of the molecular fields I and G on the magnetic
birefringence of the liquid. At first we shall restrict the problem to the case of isotropically
polarizable molecules. On substituting the expansions (3.6) and (3.10) in the general equa-
tion (3.5), and by (4.10), we have

. N
27 OFP
:Cm :ZS{WM_M)(Z (3+ TE, +--~>>+

p=1
N XN ® 5@ ®) 5@
- oy OF” 3G  9F 9G] }
@y OFq " , 4.17
Y (;1 ; (3 5E, 9H, ~ 9L, 3H,) " 17
In the case of spherical molecules, Eqs. (3.11) and (3.12) yield
® N
i Z e Y Y T
raép :9&}’ i:ﬁlr

r=1 s=1
r#q s#g

ﬂ _ 'ZZ Téﬁ')er Z Z T(qr) (rs)w'__, (4.18)
rsﬁq
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whence Eq. (4.17) goes over into

N N N
27 Y o? (pr) m(rs
cm:fﬁ{%n—m)(} (1+? Yy Ta%>Ta,s’+--~)>+

o Ty i
Lo <\i i i i TETYD | >} (4.19)
I \L & &L ap lap
Eq. (4.19) is rewritten as follows:
Cn = ZTJZSJY{S(W —711) (1 +02JR) +6 “sz fz’e}, (4.20)

wherein, by (3.18), we have

1 N N N
JR=—3—N<Z Z Z T;§'>T;g’)+...> _

p=1r 1
r

1
r#£p

+ 0 f f f TEOTE g®)(zp, 14, 7) drpdrydr, + },
YRR
;- (pr) rplas) -
i (DY D)

p=1g=1 r=1 s=1
Fp $Fq

0
=3P {f [ TEOTE 8P (1, 7o) drpdry +

P
Y

= %
“w @

+ 20 f [ f TEOTE ¢®(1p, 74, 7) drpdrgdr, + } (@.21)

Restricting ourselves to pairwise correlations, we have by Eq. (4.21):
Tn=Tr=20 [ 1538l dryy = 8o [ r5() dr. (4.22)
0

The integral parameter Jg describes the radial correlations of the spherical molecules; g(r)
is the radial correlation function introduced by Zernike and Prins (1927) into the theory
of X-ray scattering in liquids.

For molecules not presenting hyperpolarizability, 7, — 7 =0, and by Eq. (4.20)
we have

4ot

Cn = 537

224 NJg. (4.23)
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The foregoing result is equivalent to the statement that, in fluids of spherical molecules,
radial correlations of the molecules can lead to magnetic birefringence even in the absence
of molecular hyperpolarizability3.

Non-linear variations of the molecular polarizability can be given rise to not only by
an external field, as is the case in gases, but also by the molecular fields F or &, provided
the medium is sufficiently condensed. Applying the expansions of Eqs. (3.6) and (3.10),
we have from the general equation (3.5), for non-dipolar liquids whose molecules present
a centre of inversion,

1 N N
o= % i (Z 0ty 3 0 (20 +

1 1
D KPR+ )R PR ¢ ) ). a24)

In the case of non-dipolar molecules possessing a permanent quadrupole moment, the
molecular electric field F$ in Eq. (4.24) assumes the form

(p) 1 Z T(pq) @(q) (4“25)
q#p

The permanent quadrupole moment of the ¢-th molecule is given by the tensor

0D — 4 3 P BRI — 12, 3,,), (4.26
n

wherein €2 is the n-th electric charge of the g-th molecule, and #? — jts radius vector.

The tensor

Tffg) = r1;;17 {5rpq1 TpgeTpgn ™ riq( laen + 7 Tpqe 171 t Tpgn 513)} (4'27)

accounts for interaction of the quadrupole-quadrupole type.

A more advanced discussion of Eq. (4.24) leads to highly involved expressions, even
if the quadrupolar molecules have the axial symmetry. Thus, we shall refrain from pushing
forward with it at present. Our sole aim was to stress that, in general, the orientational part
of C,, can be dependent on the molecular electric field given rise to by the quadrupole
moments of the molecules of nondipolar liquids.*

3) Similarly, the effect of the terms 9F,/0E, s and JGyfc Hpg on the constant C,, can be computed for the case
of anisotropic molecules of non-dipolar liquids. Expressions are obtained which, on replacing therein the magnetic
by the electric polarizability, are analogons of the formulas derived by Mazur and Postma (1959) for Kerr’s
constant in non-dipolar liquids.

1) By writing the mean square of the reaction field gradient resulting from Onsager’s model in place of F2,
Eq. (4.24) can be brought to a form adapted to numerical evaluations, by a procedure quite similar to that used
in a paper by the present author on light scattering in quadrupolar liquids (Kielich 1960).
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5. Dipolar Diamagnetic Fluids

Since magnetic birefringence does not involve orientation of the electric dipoles in the
external magnetic field as is the case for electric birefringence, Eq. (4.9) extends to dipolar
gases also. In certain cases, Eqs. (4.7), (4.12) or (4.13) also can be applied to dipolar liquids,
as done in the existing theories of the Cotton-Mouton effect. However, in dipolar fluids
whose molecules possess large dipolar moments, a strong molecular electric field F gene-
rally exists, which can affect the shape of the magnetic birefringence noticeably. The follow-
ing equation now holds: : »

N N N
. 7 1
Cm = 7475 Earivg <Z ("]z(rj?:rg +)+ ‘ﬁ Z Z (OCE,P,? x,(,g)—F
r=1 p=1 g=1
+aB E8 FP+ 0B FS + L, &0 FRFP+ ) > (.1)

as derived from the general equation (3.5) and Eqs. (3.6) and (3.10); the molecular field F,
is given by (3.13).

We shall now proceed to a discussion of the foregoing equation for the case of dipolar
molecules having the axial symmetry. On taking the axis of symmetry of the molecule as
axis 3 of the molecular system, we have, by the transformational formulas (4.2),

“Er!? = “601 + “6u (360%31:1) (l)g;) - 601)’ 765? = Xavg + xax (360.%) w(:g - 61'9)’

ﬁffz"r):e = ]36070)(31;) + ﬁaﬁ (360531;)&)%? - 60’: wgps)’ éngg = 5679 wgiqe) + 565(360 giqv) wi(ig) - 61!9) wl(’:qe)7

(5.2)
wherein the quantities
_ 133 - /31 . 53 —&
613 = 3B s 0 =~ 3& ! ’ (5.3)
B=5Bs+28), &E=3(5+28) 64

provide a measure of the anisotropy of the respective hyperpolarizabilities of the molecules,
together with their mean hyperpolarizabilities; herein, we have used the following nota-
tion:

Pus =Pz =P Esm =& =&,
Bas:s = Ba> $5:03 = &5-
Restricting ourselves to the first term in the expansion of Eq. (3.13), we have

N N
Fg;) =2 21 Tg,’;')‘us;) = ‘u Zngﬁr)U)gg, (5.5)
o= ra=
r¥#p TED
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and Eq. (5.1) yields, by (5.2) and (5.5)

N N
_ 2= o) ® i
Cn = 5 <le (3%af: ap — Naa:pp) + T adq %0, Z

p=1 g=1

N

(3 cos? o0 — 1) {1 +

+ =F ,u Z (3 cos 6P cos B — cos @) 1,

"r

e -
- £% 7 Z (3 cos 0@ cos 6 — cos @) 7 ® —|—}> . (5.6)
10y
r=1
r#q
Herein, cos %9 = cos §%) cos 60+ sin 6% sin 69 cos (p,—p,), with ¥ and 6@ denoting
the angles between the axis of symmetry of the p-th or g-th molecule, respectively, and
the vector 7, connecting their centres, whereas ¢, and @, are the azimuths of their axes
of symmetry.

On introducing into (5.6) the correlation functions as given by Egs. (3.18) and (3.19),
we have

, 270 18
Con = {(3770cﬁ af — Naa:pp) V+ “‘Su %04 [V+

+ % 0 f (3 cos? 0@ — 1) g® (1, 7,) d7, d'rq] +
+ %}"" (xbg §0s + 20, BOg) 0 [f (3 cos? 6D + 1) X
X (3 cos 0P cos 6V — cos 6%9) 1,3 g (z,, v ) dr,dv,+ 0 fff (3 cos? P2 — 1) x
X (3 cos 6P cos 69 — cos6?7) % g (1,,7,, 7,) dr, d7, dt,]}. (5.7

On neglecting three-fold and higher correlations herein, we have, finally,

2nN

Cn = 5 {(377«%/3 af — Naa: ﬂﬁ)+ T °€5a %0y [1+ Ja+

by

+ % 1o (& 565) f(3 cos? 0@ + 1) (3 cos 6@ cos 6@ —

— cos 659) 172 (1) d]} (5.8)

Thus, we have computed the contributions to the orientational part of the constant C,,
due to the permanent dipoles and hyperpolarizability of the molecules,
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Eq. (5.8) as given above is not adapted to numerical evaluations, as not all molecular
parameters appearing therein are known. This obstacle is circumvened by means of the
Onsager model (1936) replacing the molecular field F, by the mean reaction field R; for
anisotropic molecules, the latter is given as follows (Kielich 1960):

_ 2(e —1) (n2— 1) s
Qe+ D) (2+2) —26—D (-1

F =R, (5.9)
where A, =oJa is the parameter of anisotropy of the polarizability per isolated molecule,
and &— the electric permittivity of the dipolar liquid.

On substituting in Eq. (5.1) the mean molecular field of Eq. (5.9), and by utilizing the

expressions (5.2), we obtain, on neglecting angular correlations (the temperature-independent
term, which is small in this case, is omitted):

_ 4nN [ B E0s \ u*
Cw = ST 0 Oy {1+ (aéa + ) ol (5.10)
with the notation

u* 2(e —1) (n2—1)

7 @) (R ) — 26— (1) 4y 6.11)

6. Magnetic Birefringence of Multi-component Systems

We shall now consider the case of the macroscopic sphere of volume ¥ containing mole-
cules of different species, namely, IV} = x,V molecules of the first species, N, = x,/N ones
of the second, ... and INV; = x,N molecules of the i-th species, with

_ N
-

X =

==

denoting the mole fraction of the i-th component of the system. Summation over the mole
fraction of all components of the system yields unity, D7 ; = 1.
i

For the multi-component system as defined above, Eq. (3.4) has to be replaced by the
following set of equations: A
N ] N
M =2 mi®D, M = 3 ) mmed, (6.1)
i p=1 1 .

5 og=

Herein, m&®?and m™%"are the components of the electric and magnetic dipole moments,
respectively, of the p-th molecule belonging to species ¢ and of the g-th one of species j.
In the present case, the expressions (3.6)—(3.13) remain valid, provided the index.
i or j is added everywhere beside p or ¢g. The general equation (3.3) holds for an arbitrary
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diamagnetic medium and, hence, it is valid for multi-component systems, so that with (6.1)

we now have
aame@:i)
Cn E‘"“’(Z ZQEQHQH '

Ni o Ni mEPs) m(q,7)
AIPREEE)

being the general equation for the molecular constant of magnetic birefringence in a multi-

component system.
By a procedure analogous to that of Section 4, Eq. (6.2) yields in a first approximation

Ni
v T 3 (.75 @04
Cn = 45 <Z le (37};%:%3 + 3”«73:1%1_‘ 2’70:1;:,/)313) +

N

o

D=

+ ]fiT Z Z oz,(,';g") (q,J) (%(U(pq,u) (M,t])+ Sw(pq,u)w(:;q,m 200,5(5,37)) (6.3)
—

1

i
-

r=1 ¢

with w(" q’

9 denoting the cosine of the angle between the axes X' @ and X g’q) of the molecular
systems attached to the p-th molecule of the i-th species and to the g-th one of the j-th species.
The tensors a{%?, ng’g’z, and %7 retain their physical meaning, albeit with respect to mole-
cule p of species i or to molecule g of species j.

By analogy to the expressions (3.18), we now have

Ni )
<§1 Di(7,)> = %0 / Dy(7,) gSD(Tp) dv,,

Ni Nj
<Z Z cbz](rp’ q)> - vl'xjg ff djy(tp? T ) gu ( Tq) drpdtq’
P
Ni Nj
29790 L ICHEIEAN
p=1g=1 r=1
aFD r#p
= XX0 f f f Dt (T T 7)) &R (115 T 7,) drdr dr, . (6.4)

wherein g{" is the ordinary correlation function for the molecules of species 7, g — the
binary correlation function for molecules of species i and j, &%) — the ternary correlation
function for those of species i, j and %, and so on. -

With respect to the expressions of (6.4), Eq. (6.3) now assumes the form

aN . 2 1 g
Cn = ‘43 {Z xi(37]g/3: af + 377;3): fa 2nm ﬂﬂ k_’f Z Z “Szg nga) [xi(si;'saﬁ:yd+
- e

+ x50 [(3(0(%,1]) (pq,u) i 3(1)(1’4,1]) (Pq:ll) 250,,9576)&,(7“) dqu]} (6.5)
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If the molecules of all components of the system present the axial symmetry, Eq. (6.5)
reduces to

2nN . ) 1 .
A {Z SO, 10— M)+ 20 D ) i i (xiaif+xfxffgf>)}, 6.6)
t J

1

wherein
P =%e f (3 cos? 632 — 1) (7)) d,p 6.7)

is the parameter of angular correlation of the axially symmetric molecules of species i and j.
The angular correlation factor (x;8;+ x;%;J5°) appearing in Eq. (6.6) was derived
by the present author in an earlier paper on the theory of molecular scattering of light

in multi-component systems (see, Kielich 1960, 1961).
Eq. (6.5) can be put in the form

Co= 05 CO+ D 2%, CD+ ..., (6.8)
i i g
with
co_ 2 Nl o oL (300 5 — @) 5 6.9
m 45 Napiap ™ Naa: 68 kT %op Xap — P2 Xpp) [ 5 (6.9)
CP= g7 wS1Re f (30 ZB D + BP0 (99— 28,8, 85(%ho) da- (6.10)

From the shape of Eq. (6.8), the molecular Cotton-Mouton constant of a multi-compo-
nent system is independent of the density and intermolecular correlations in the first approxi-
mation only. If the system presents no molecular interaction, we have C% = 0, and Eq. (6.8)
becomes

Co= D CP, (6.11)

expressing additivity of the molecular constants C® of the components.

Obviously, Eq. (6.11) obtains for a mixture of diamagnetic gases wherein intermolecular
correlation is zero or so small as to be negligible. In the general case, by Eq. (6.8), the con-
stant C,, of a multi-component system does not fulfill the law of additivity as a result of
interaction both between molecules of the same species and between those of the various
components in condensed systems.

For axially symmetric molecules, the term in C, of Eq. (6.8) accounting for angular
correlation of molecules i and j is of the form

4aN

) —
G = 5T

%0, %0235 - (6.12)

If, in particular, a two-component system is considered, Eq. (6.8) yields:
€, = 2y CO iy CB a2 COD oy (COD 4 CED) £ 22C 1+ ., (6.13)

With xl‘l' x2 = 1.
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In the case when all molecules possess the axial symmetry, we have on the basis of (6.9)
and (6.12) (the small hyperpolarizability effect will be neglected):

CgP =PI, G — (I 619
dnN daN
C’(:) = TR aléu,lxlax,lﬁ C'(n2) = sk “2‘3«,2%25;:,2 ’ [(6'15)
daN 4aN
C,(:z) = 5kT a16¢,1Z261»2J,«(112>’ Cgl) = sET “2‘505,2%1635,1],(,21) . (6‘16)

7. Discussion

We shall now proceed to numerical evaluations which will bring to the fore the contri-
butions of the various molecular factors to the magnetic birefringence of the liquid.

In the first place, we shall consider a liquid of spherical molecules. In this case, from
Eqgs. (4.11) and (4.20), evaluation of C,, requires knowledge of the values of the magnetic
hyperpolarizability %, and #, of the atoms or molecules, which as yet we do not possess.
The sole exception is that of atomic hydrogen, for which, according to a computation by
Buckingham and Pople (1956),

6
Vlﬁl — %9_% = — 53x 1074 e. m. u.

6
ni _— % Eagﬁ = —89 x10~% e.m. u., (7.1

where a, is the Bohr radius in the ground state, m—the electron mass, and c—the velocity of
light. Identical values of 5, and %, can be assumed for the argon atom, as the atoms of hy-
drogen and argon present almost identical electric hyperpolarizability (see, Buckingham
and Pople 1955) amounting to

1 = 0.67x10"%e. 5. u., y4 =0.7x10"%e, 5. u.

On substituting the figures of (7.1) in Eq. (4.11), we have, for both hydrogen and argon
in the gaseous state,

(% = 454%x10~2%¢, m, u.

Let us now turn to liquid argon and compute the effect of the molecular fields therein
on the constant C,, according to Eq. (4.20), which we now write as follows:

672
Cn=Ci* {1+ [1 + ————~] o), } 7.2)

S — R | ‘
with the constant C%*® given by (4.11), and J, — by (4.22).

The parameter of radial correlations, Jp, can be determined from the results on X-ray
scattering due to Eisenstein and Gringrich (1942). In particular, for liquid argon under
a pressure of 0.8 atm and at 7 = 84.4°K, we have (see, Buckingham and Stephen 1957)
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Jr = 8.4x10% ¢m~S, Introducing moreover @ = 1.63xX10-2¢ em3and y = —3.2x10-2°cm?
we have, by (7.2),
C, = C&(140.03) = 0.47 X 1078 ¢, m. u.

Hence, the contribution to C,, due to the existence of an electric and magnetic molecular
field in liquid argon amounts to no more than 3%.

The parameter J can also be determined numerically from formulas yielding the degree
of depolarization D of scattered light and the coefficient of Rayleigh scattering S which,
in the approximation of the present theory, are of the form (Buckingham and Stephen 1957,
Kielich 1960)

. 60% Jr :
b= 50kThr A +...) + 702 Jg ’ (7.3)
§ = B 1P {50kTBr (1 +...) + 1302 Jg}; (7.4)

T 104%

herein, 7 is the isothermal compressibility coefficient of the medium.

Let us consider e. g. the case of carbon tetrachloride with a = 10.5x 10-2¢ ¢cm3,
g = 6.23x10% em™3, B, =105x10"12cgs, and D = 0.06 at 20°C (Bhagavantam 1942)
whence, by (7.3), we have
50kT pr.D

= 1.3% 1043 cm=*.
a2(6—7D) 1.3x 1043 cm:

L Jr=

We shall now utilize the foregoing value of Jp for computing the electric hyperpolar

izability of the CCly molecule from the equation for the molecular Kerr constant of liquid
consisting of spherical molecules (Kielich 1960):

K, = ZnN

|

{5(7|| yo) (.. )+6 JRJ (7.5)

with a denoting the mean static polarizability of the spherical molecules.

The molecular constant K,, of CCl; will be computed from the following experimental
data at 20°C: V' =96.5cm? n = 1461, ¢ =224 and K = 31.4x101e. s. u. (see,
Stuart and Volkman 1933), whence

54n2V
Ky =+5—5—=-7 K=11 12 ¢, s u.
(n2+2)2(a+2)2K 11.37%x107 22 e. 5. u

On substituting the foregoing values of K,, and Jg in Eq. (7.5), the change in electric

polarization of the CCl, molecule, as due to a strong electric field, results as

?’H‘?’J.=%7’=4‘34’X 10-36 ¢, s. u.

There is one point to be made here. In the case of the electric birefringence of liquid
CCl,, the contribution to K, from radial correlations and the molecular electric field,

N a2a? Jp = 5.9 x 10712 ¢, s, u.,

R
Kn = 5kT
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is somewhat larger than the amount
Kt — 23—" Ny —y1) (1+..) = 547 x 10 2. & u.

resulting from the effect of molecular deformation (Voigt’s effect).

We thus see that the mean electric hyperpolarizability of the CCly molecule as computed
above, y = 6.51x103% e. s, u., is 9.7 times larger than the electric hyperpolarizability of
the hydrogen atom, y = 0.67xX10-3e. s. u. If we now assume that their magnetic hyper-
polarizabilities present much the same ratio (this is justified with respect to the accuracy of
our evaluation), we can write for the CCl, molecule, by (7.1),

(% =97l =—514x10*e. m. u, 7§ =97y =—863x10"* e. m. u,
Introducing these values in Eq. (4.11) yields
(8 = 4.4 %1078 e. m. u.

We shall also evaluate the effect of the molecular fields on C,, in liquid carbon tetra-
chloride. On substituting in (7.2), in addition to the above data, y = —10.9x107% cm?,
we have

C, = C= (140.002) = 44X 1018,

These evaluations of K,, and C,, for liquid CCl; make it clear that, inasmuch as the con-
tribution to its electric birefringence from the effect related to the molecular field and radial
correlations of the molecules is very high (51%,), it plays no part at all in the magnetic bire-
fringence (0.29,) where Voigt’s effect predominates decisively.

As yet, no measurements of the magnetic birefringence of carbon tetrachloride are
available. The evaluation of a constant amounting to C,, = 4.4x 10718 shows that there is
some hope for the experimental detection of magnetic birefringence in CCl, by applying
a strong magnetic field and a measuring device of sufficient sensitivity.

For liquids whose molecules are strongly anisotropic, the numerically small term
(3Mup:as—Taazpp) 0 Eq. (4.13) can be dropped, yielding

C,=CE(1+J,) (7.6)
wherein
4nN
gas _ LY .
Cm SkT O((Su xél (7 7)

is the molecular Cotton-Mouton constant of the diamagnetic fluid in the state of gas, and
J,4 — the angular correlation parameter defined by Eq. (4.14).

The numerical computation of J, for a liquid is a highly involved matter. We are,
however, able to determine J, numerically from Eq. (7.6), provided the constants (,, and
CE are experimentally known. Thus, e. g. for benzene at 20°C we have C,, = 171x10-%7
(Burge and Snellman 1949) and C&* = 335x10-17 (Konig 1938), for which Eq. (7.6)
yields
Con

g2as
m

Ja= =2 —1=—049. (7.8)
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For comparison, we shall now determine J,, from the degree of depolarization of scattered
light (Anselm 1947, Kielich 1960):

_ 605 (1 + J4)
50kT Br+782(1+Ja)

For benzene, (52 = 3.69 x1072, f;=94x10"%atm™!, ¢ =6.78x10*' cm™5, and

D = 43.5x 102 (De Vaucouleurs 1951), so that Eq. (7.9) now yields a value of

, _ 5okT prD

A= —"—
8,(6 —7D)

D

(7.9)

—1=—048. (7.10)

Consequently, for benzene the formulas (7.8) and (7.10) yield coinciding values of the para-

meter J,.
From Eqs. (7.6) and (7.9) we have the relation

gas 50KT B D

Cp = C¥ 7.11
82(6 — 7D) (.11

making possible to compute the constant C,, of a liquid if the degree of depolarization of
scattered light D for it is known experimentally.

Let us now go over to the discussion of Eq. (5.10), which holds in the case of dipolar
liquids. As get, we have no knowledge of the numerical values of the hyperpolarizabilities
B and £ of dipolar molecules. One of these, 8, can be derived with comparative ease from
the light scattering constant (Rayleigh ratio) and the degree of depolarization of scattered
light (see, Kielich 1960):

e Y [ Y ) WP LY B AR
s =1 2240——{(1+2 ) b Thr o (14255 ) o, (7.12)
*
6(1+2” 2’366”) &
D = % O , (7.13)
p* w1\ 2
5(1+2 = )ngﬂr+7 (1+2 L) O

wherein the dipolar moment u* of the axially symmetric molecule is given by Eq. (5.11).
If we assume the approximation of i; = 1, which is exact for an isotropically polarizable
molecule, Eq. (5.11) reduces to
st 2(e—1) (n?—1)
w32+ (7.14)
and Eq. (7.13) becomes identical with the one derived by Buckingham and Stephen (1957).
In the case of chloroform, at 20°C, we have & = 4.81, n = 1.458, u = 1.05x10-18
e. s ., a3=0.68x10"2cm3, a; =9.01x1024cm3, ¢ =T75x10%cm=3, fr= 94X
%108 atm~%, D = 0.242 and S = 18.7x10~® cm~'. Here, the light scattering constant
was computed from the relation S = 0.4 Sgy (see, Bhagavantam, 1942), wherein the
scattering constant for benzene was assumed as Sg gy, = 46.8 1078 cm~1 from measurements
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by Carr and Zimm (1950) at 1 = 4358 A reduced to ¢ = 20°C. Substitution of these data
in Egs. (7.12) and (7.13) yields

' By =9.6X10®e. s u, B =121x10Pe. s u,
whence the electric hyperpolarizability anisotropy of the CHCI; molecule amounts to

3805 = Bs— By = —25%x1072 e, u. s,

With this evaluation of the hyperpolarizabilities, we have

*
Bos p* _ 0.32

by &

?

which means that the contribution to the constant C,, as given by Eq. (5.10) from the mole-
cule’s electric hyperpolarizability alone is considerable, amounting to 32%.

If the magnetic polarizability anisotropy 3x6, = x3 — 1 of the isolated molecule were
also known (e. g. from measurements of the magnetic birefringence in the gaseous state),
it would be quite easy to compute the change in anisotropy of the magnetic polarizability,
3&8, = & — &, due to the molecular electric field existing in the liquid, from Eq. (5.10).

Obviously, in dealing with liquids whose molecules present a large dipole moment
(e. g. one exceeding 1.5 Debye), it is to be expected that the part played in the magnetic
birefringence by the molecular electric field and the effect of hyperpolarizability of the
dipolar molecules related thereto will be much greater.

From the expansion of Eq. (3.6a) we derive approximate formulas for the components
of the effective polarizability parallel and perpendicular to the axis of symmetry of the
molecule:

.'/T3 = “3+ﬁ3ﬁ3+...,
7y = g+ Py Fs+ ... (1.15)

For the Onsager model, with respect to Eq. (5.9), the mean molecular field ﬁ_’; is given by

*

Fy = ’—g— : ' (7.16)

where u* is the dipole moment (5.11).
In the case of chloroform, o == 8.233x 10724 cm3, p* = 24.5x10~2e.s. u., f, =
=12.1x102e. s. u. and B3 = 9.6x10-2 e. 5. u., and Eq. (7.15) yields

Ty = oty (1—{— ﬁ—:fzﬁ“) = oty (1 +0.43) = 9.55 X 10~ 24cm3,

o= oy (1+%E+...) = o, (14 0.40) = 12.61 x 1024 cm?.
1

Thus, owing to non-linear deformation produced by the strong electric molecular field, the
CHCI, molecule on passing from a gaseous into a condensed medium raises its polarizability
by as much as 40%.
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The foregoing considerations thus lead to the conclusion that the effect of non-linear
molecular deformation due to the strong electric molecular field in the liquid plays a much
greater part in the magnetic birefringence than the analogical effect brought about by an
external magnetic field, i. e. than Voigt’s effect.

8. Conclusions

From the foregoing molecular theory of magnetic birefringence and its discussion it is
clear that the molecular Cotton-Mouton constant, C,,, of diamagnetic fluids can depend
quite generally on a considerable number of factors of a microscopic nature. The part played
by each of these factors can be generally said to be different, and is dependent in principle
on the species and structure of the atoms or molecules and on the interaction between them.

Investigation of the magnetic birefringence in the gaseous state is a source of data
on the optical and magnetic properties of the isolated molecules. In liquids, the molecular
constant C,, depends not only on the optical and magnetic properties of the isolated molecule,
but is moreover dependent on their electric properties (e. g. on their dipole or quadrupole
moments). The electric properties of the molecules influence the magnetic birefringence
of the liquid indirectly, both through the potential energy of molecular interaction or the
molecular correlation function, and through the molecular electric field producing hyper-
polarizability of the dipolar or quadrupolar molecules,

In the case of an atomic gas or of one consisting of spherical molecules, magnetic bire-
fringence is due to the temperature-independent non-linear deformational effect alone. In
the liquid state, however, this effect appears together with a temperature-dependent effect
resulting from radial correlations of the spherical atoms or molecules. This latter effect is
determined by the parameter Jg. The magnetic birefringence of a liquid whose molecules are
anisotropic depends almost entirely on the effect of molecular orientation intimately related
to angular correlations of the molecules. In the special case of axially symmetric molecules
and in the first approximation of the theory, the angular correlations are described by the
single integral parameter Jq. Identical parameters J; and J, appear in the theory of light
scattering also. It should be possible to apply the parameters J, and J, as determined from
both these effects for obtaining fuller understanding of other molecular orientational effects,
such as e. g. the Kerr effect or that of dielectric saturation involving, in addition to Jg and
J4» other more highly complicated parameters of the angular correlations. In the case of di-
polar liquids, the formulas for the molecular Cotton-Mouton constant the degree
of depolarization of scattered light D, and the scattering constant S make possible to assess

:
“m

numerically the anisotropy of hyperpolarizability of the dipolar molecules. In particular,
the anisotropy of the -electric hyperpolarizability of the chloroform molecule was de-
termined.

The theory of the magnetic birefringence of multi-component systems presents a high
degree of complication, as involving not ouly correlations between molecules belonging
to the same species but also correlations between molecules of the different components
of the system. The molecular constant C,, behaves additively in the case of a mixture of
perfect gases only. In solutions. owing to intermolecular correlations, the orientational part
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of C,, fails to fulfill the condition of additivity, Light scattering in multi-component systems
is similarly dependent on the intermolecular correlations.

Thus, research work on magnetic birefringence and light scattering is a source of
valuable information concerning the electric, magnetic and optical properties of the isolated
molecule and various molecular correlations. Data thus obtained on the molecular functions
of the configurational distribution may well be of decisive importance in the statistical
theory of liquids with spherical or anisotropic molecules.

The author is indebted to Professor A. Piekara, Head of the Laboratory of Dielec-
trics of the Institute of Physics of the Polish Academy of Sciences in Poznan, for his valu-
able discussions.

APPENDIX A

Expansion of { D >y in powers of the field strengths E and H
Let us consider an arbitrary function @ = @ (I, E, H) describing the state of the
system at configuration I" and subjected to the effect of the external fields E and H. We
denote the mean statistical value of @ in the presence of the fields E and H by {<®>g -
By classical statistical mechanics, (@ gy is given by the formula
_ U(LE,H)
[or,EHe T ar

UG Em
fe * ar

(POgu =

(A.1)

In the case under consideration, the electric field strength of the light wave is generally
small, and we can restrict ourselves to the linear approximation in E when expanding { @ >g
in powers of E and H, thus

<¢>E,H = <¢>+ {5% <¢>E,H}0 E+

1o 1] o8 )
+ {9E9H<¢>E,H}o EH + 5 {—————QE BYeE <¢>E,HL EH?+..., (A.2)

wherein ( @ > without indices denotes the mean statistical value of the function @ in the
absence of external fields as given by Eq. (2.5). It should be held in mind that, by the
definition of (A.1), (@ )y depends on E and H both directly, through the function
O(I',E, H) and indirectly, through the potential energy U(I, E,H). The respective
coefficients of the expansion (A.2) are now obtained as follows:

9 . P &b U 1 QU
{a“E <¢>E’H}o= (ﬁ T 5E> * ﬁ<¢><ﬁ>’
o o2 1 [e@ oU 0 AU QU
{_—aEaE <¢>E,H}0= (5@7{‘ y (‘af m T er v ® a—EaH) +

L @ 3UaU\ 1 [éo @ aU\ [oU\
712 ok o/ T ET \9F " xT 98/ \oH
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_1_<9_¢_~29_[_f>< >+<¢’> Cal L 2<9_U _oU\oU
T T \oH " iT 5H/ \9E 5500 kT \*\oE/ ~ 9E/ 9H/’
93 . 9%p 1 220 U 920 U 23U
{9E9H2 <®>E’”}o= <9E9H2 T (2 smonon T3 sE T Pomem T

90 92U od U | P (U o 82U 9U
SHOEOH "5k o2 T TR \PEHE T “0EoHoH
1 (309U 209U\ dU 'd’il_f@_U2+

R \0E o0 T “9HOE) 9H  FPT°IE \oH

<¢>< 92U 1 (oUU  , U U\ 1 U
SEOEP kT \9L 9HF ' °3E9HOH| T RTROE

(g L (pBU ey sy, o 9U@U><£f>+
QEQH kT QEH  QJEOH QHOFE szzé)EQH oH

_L,i<9_2?_‘1_ pU | ,9P0U) @ (39U ><9_U>+

" \emE " ar \ComE Toman) T e \oH) [ \9E

1 Jeo 1 92U 1 [_[oU\ oU\aU
*”k_T<aE 7T Ke>- ¢)9F><9H2+ﬁ(2<971>*971) 97{> +
2 [od 1 22U 1 oU\ U\ U

+ﬁ<aH 7T (KP>— ‘p)aﬂ><aEaH+ﬁ(2<ﬁ>“5ﬁ) 51?) +

k3T3< ?> <9E><gg> ' (A.3)

By Eq. (2.3), the function of state is now of the form

+2

1 1 e ¢
= 3, M —DE) - € = o (M5 — Mic) e (A.4)

We assume that the sample of the isotropic medium when acted on by a strong magnetic
field changes its total volume ¥gonly, without undergoing a change in shape, and that this
change is a quadratic function of the field strength H. The moment M®being a function
of the fields E and H, we have, on taking magnetostriction into account,

(58) - 7 (5ee)
k] ~ Vs \oE, “ %/’
() 1)
9E9H/| ~ Vs \PE, o, [’

< 930 >_}_ o3M; bk 1 [oM; > 9*Vs (A5)
9hol?| ~ V5 \\9E,9m,0m, © > " " T Vs \oE, [ \oHE)of T

On substitution of (A.4) and (A.5) in the expansion (A.2) and (A.3), and on taking
into account that isotropic averageing involves the vanishing of all terms containing odd
powers of the coordinates of the unit vectors € and h, Eq. (2.3) yields the expansion (2.4).
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