Kielich, S. Physica 28
1962 511-520

SECOND VIRIAL COEFFICIENTS FOR UNLIKE
NON-DIPOLAR MOLECULES

by S. KIELICH

Polska Akademia Nauk, Instytut Fizyki Poznan, Grunwaldzka 6, Poland.

Synopsis

The present paper brings the calculation and a discussion of the second virial
coefficients By; for unlike non-dipolar molecules of a gas mixture. In computing By,
account is taken of the intermolecular central forces and of various types of tensorial
forces acting between two non-dipolar molecules possessing, in general, a permanent
quadrupole or octopole moment. In order that the formulas shall be correct for mole-
cules of arbitrary symmetry, all contributions to B;; from the directional intermolecular
forces are computed by means of the tensor formalism. The general formulas thus
derived for By are discussed for the cases of linear or planar molecules having the axial
symmetry, and for that of tetrahedral molecules. The latter formulas for the Lennard-
Jones (6 : 12) potential are applied to one-, two-, and three-component gas mixtures.
Numerical estimations of the second virial coefficients are given for the gases He,
Hjy, Ng, Og, COg and CHy, and for their mixtures.

§ 1. Introduction. The Kamerlingh Onnes virial expansion for the
equation of state of a gas mixture is of the form:
PV _ 2
— = X+ — Z E %4%1By + — Z Z Z xxixkCigr + . (1
RT i=1 V'L 17=1 i=1j=1k=
Here p, V and T are the pressure, molar volume and the Kelvin temperature,
respectively; x; is the mole fraction of the ¢-th component of the mixture and
v-the number of all components. By; is the second virial coefficient describing
the interaction between two molecules of species i and species j. The third
virial coefficient Cyx characterizes the three-body interactions of the
molecules of species i, j and k, respectively.

According to classical statistical mechanics, the second virial coefficient
By can be expanded in the form1)?2):
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is the second virial coefficient for a central force field u(ry) ; 74 is the distance
between the centres of the i-th and j-th molecules, vy = v(ry, w¢, w;) being
the tensorial potential energy (angle-dependent potentials) of interaction
between the two molecules of species i and species j, and the variables w;
and wj describing their orientation; 2 = /dw; = / dew;.

In the present paper we calculate the second virial coefficient Bj; given
by (2) for non-dipolar molecules of arbitrary symmetry and possessing
permanent quadrupole and octopole moments.

§ 2. Calculation of By for the general case. Let us consider the case of
interacting molecules of a gas mixture which, though not dipolar, possess
permanent electric quadrupole and octopole- moments, defined by the
tensors2)3)

(@) - 1 2
Op=3X% e§n)(3”§g)”$) — 7in0up)> (4)
n
i) 1 (n)f 5, (n) (n) 2
-Q;fsy =} X {5, "%)"13 - ”m("q(:g)éﬂy + ”%L)‘sya =+ Viﬁ)éaﬁ)}, (5)
n

where ¢{® is the n-th electric charge of the molecule of species ¢, and #{™ —
its radius vector; d4s is the unit tensor, and «, § = 1, 2, 3.

The tensorial potential enmergy of mutual interaction of two unlike
anisotropically polarizable non-dipolar molecules is given by the general
expression?4):
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where af¥) denotes the electric polarizability tensor of the isolated molecule
of species 7, and «; and »; — its mean polarizability and frequency of electron
oscillations, respectively; 4 is the Planck constant.

The first term in the foregoing expression determines the interaction
energy resulting from the anisotropic dispersion forces; it was discussed by
De Boer and Heller5), London$) and De Boer?). The second term in
eq. (6) accounts for the potential energy of quadrupole-quadrupole interaction
(KeesomB8)), whereas the subsequent ones are those of induced dipole-
quadrupole (Debye?), Keesom?)), induced dipole-octopole etc. inductive
interactions. The tensors T, T(7) and T, characterizing the dipole-dipole,
dipole-quadrupole and quadrupole-quadrupole interactions are given by 2)10)



SECOND VIRIAL COEFFICIENTS FOR UNLIKE NON-DIPOLAR MOLECULES 513

TG = — 7553 a i35 — 7i0up)
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T, = —3r7°(35r st arisyrise — Sr2(rijarisedve +
+ 7ija¥15y080 + TigaTijo08y -+ Vigarisydas + Yisa¥ijeday -
+ 7igr1g00ap) + 75(Oapdyo - Oaydps + Suodpy)}. (7)

On substitution of the expression (6) in eq. (2), and by the method used
in the preceding papers?)11), the second virial coefficient is obtained in the
form:

- centr disp quad-quad ind. dip-quad ind. dip-octop
B = Bi™ + By** + Bj + B + Bj )

4

Here, BJ" is the contribution to Bj; resulting from anisotropic dispersive
forces and having the form
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where we have used the notation
w(riy)

g™ = [ri" e KT dry. (10)

The remaining contributions to By in (8), which result from quadrupole-
quadrupole, induced dipole-quadrupole and induced dipole-octopole in-
teraction, are given by the following expressions;
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For linear or planar molecules having the axial symmetry, we obtain
30:%0(% — oc(aio)(ocg/; = 180(?1{?, oc(ofé@% = a0y,
HE) — 2 OO . 303
0405 = 305, 040,05, = 10;, (14)
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wherein
(@) () () )
ayy — 0 %33 — %1
K= = LW @ (15)
3oy oyq 4 2o

denote the anisotropy of electric polarizability of the axially symmetric
molecule of species ¢, and @; — its quadrupole moment (0; = Of) = —
= —20§) = —200).

In the case of axially symmetrical quadrupole molecules, the expressions
(9), (11) and (12) assume the following form when (14) is used:
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Regular tetrahedral molecules (e.g., CHy4, CCly) have a single octopole
moment component 2 = 293, where 1, 2, 3, refer to the three axes of a
cube whose three diagonals from a corner form the sides of the tetrahedron.
For molecules of this type, the contributions to By given by egs. (9), (11)
and (12) vanish, whereas

QupyRapy = 69%23 = 602 (19)
and (13) reduces to:
R, 54N . 2
Bind.dip-octop — _ ST (@27 + o, 23) ' + ... (20)

§ 3. Applications to some special cases.. The expressions for By derived
in § 2 are correct for a central forces potential u(ry) of arbitrary form.
Assuming, for simplicity, the Lennard-Jones potential in the form12)

wlry) = deg {( Oig )12_ ( i )6} | 21

Yig £}

we have by the Lennard-Jones method13)14):

o0

» w(riy)
J I T TRT — 11 2 dry = —~%,-0;?',~F(yij)r (22)

\ i




SECOND VIRIAL COEFFICIENTS FOR UNLIKE NON-DIPOLAR MOLECULES 515

oo
w(ris) n 3—n

_ o,
<1’1-;n> = 4n f?%j_n e *T dry = 317 Hn(yij). (23)

4
if
0

Herein, e;; and g5 are the well-known central forces parameters having the
dimensions of energy and length, and yi = 2(egy/RT)*. The function

1
Flyy) = E {H12(yi) — $Hs(yu)} (24)
i
is tabulated in the monograph by Hirschfelder ef 4/12), and
i 6 — 3\ v%
Hu(yy) = v~ F<m—+—n-—> i (25)
m=0 12 m!

are functions introduced by Poplel) and tabulated by Buckingham
and Poplel4).
By eq. (22), the central-force second virial coefficient (3) assumes the
form12) 14)
B = 3aNehF (viy) = byF (yy), (26)

wherein we have used the notation:
bij = %TENO’%. (27)

For anisotropic molecules possessing the axial symmetry, eqgs. (16), (17)
and (18) yield, with the Lennard-Jones (6:12) potential:

BU® — _5,50.025 (k? + «2) + 0.095k%?} Hia(yy), (28)
a7 ( ggg)z{ﬂmw " 20 st e
Bg}d- dip-quad __ __ 33b2” { ai?ﬁ;;y‘g@? Hag(yi)— ;‘g— (%Zj-) I:KinH ulig) +

—+ 2i8 “i"i@;??j;; s Hus(yy) ]} <o
Analogously, by (23), eq. (20) yields for tetrahedral molecules:
Bind-div-octon _ _ 12;;;% < “iQil;_ 8:?9? ) Hio(ys)- 31)

(i) One-component gas. In the case of a one-component gas the
virial expansion (1) reduces to:
pV B C

s =ttt (32)



516 S. KIELICH

and the contributions to the second virial coefficient given by eqgs. (26)—(31)
assume the form:

Bcentr — bF(y)’ b = %WNO'3, (33)
BYse — _52(0.05 + 0.095x2) Hya(y), (34)

70 [ 18y2 [ 62 |
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ind.dip-quad __ S R —
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3% K 7.3 E H13(y) I H (36>
275 o 2
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50y2 \ g3 a’e 100) 1)

The expressions (33), (34) and (35) were derived previously by Poplel)
(see also ref. 14).

(ii) Binary gas mixture. For a binary gas mixture, the equation
of state (1) is of the form:

PV

BT 1 4+ (%3B11 + 2x1%2B12 + x3Bas) V-1 +

+ (¥3C111 + 3x2x2Cr12 + 32125C 122 + 3Ca00) V2 + ... (38)
If, in particular, the molecules of one component of the gas mixture are

spherical and those of the other tetrahedral, we obtain, by the expressions
(26) and (31):

B11 = bulF(yn), (39)
27 a1 Q2 l
Bis = Ba1 = b [F ——_<—>< 2—>H , 40
12 21 121 (v12) IOOy%Q 0:1)’2 012812 10(3’12)1 (40)
27 [« [0} |
=b [ Flyzs) — < 2 >( 2 )H . 41
221 (v22) 5052, \ o3, e 10()’22)J (41)

In the case of a collision between a spherical molecule 1 and a quadrupolar
molecule 2 we obtain from eqs. (26)—(30):

o 2
Big = bys {F(ylz)—0.0ZSKngz(ylz) — '*i < 31 >< 5@2 >H8(y12)}' (42)

323’12 019 019819

For a mixture of a quadrupole gas with an other quadrupole gas, the
expressions (26)—(30) assume the form:
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(iii) Ternary gas mixture. In the case of a three-component dilute
gas mixture the equation of state, on the basis of (1), is given by the following
series:

|4
i’_ =1+ {x?Bll + %3Byy + %3833 +

RT
—+ 2(x1nglg -+ x1x3B13 + x2x3B23)} V-1 (46)

We assume the molecules of component 1 to be spherical, those of com-
ponent 2 to be tetrahedral, and those of component 3-quadrupolar. In this
case, the coefficients By, Biz and Bgg in (46) are again given by (39), (40)
and (41), whereas for B13, Bag and Bz we have the following formulas:

2
B13: b13 {F(yl;;) — 0.025K§H12(y13)— —3— <4a3i> < @ > Hs(yl;;)} (47)

2
32y15 \ 013 ‘713513
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which can be deduced from eqs. (26)—(31).
Similarly one can apply eqs. (26)—(31) to more complicated gas mixtures.

§ 4. Discussion. The second virial coefficients od some imperfect gases
are evaluated numerically on the basis of formulas (33) - (36) and compared
with the available experimental data in Table II. The latter prove immediate-
ly that the principal contribution to the total value of B for all gases
considered is related to the central forces. The anisotropic dispersive forces
play no role altogether in some cases (e.g. in Hy), while in others (e.g.
Ny, Og, CO2) they may give such great contributions to B that one cannot
neglect them in comparison with the contributions resulting from the
quadrupole-quadrupole interactions. It is obvious that the latter interaction
will prevail in the case of a very great quadrupole momeut of the molecules
(e.g. COg). For Hs and Ny, the contributions to B from inductive interactions
of the molecules are comparable to the contributions from quadrupole-
quadrupole interactions.

Assuming a value of £ = —12 x 10734 e.s.u. for the CH4 molecule, and
in addition of the molecular data in Table I, formulas (33) and (37) yield,
at T = 298.2°K:

Bcentr: _369 Cm3/mol’ Bind.diD-OCtOD — —59 Cm3/m01.

The total second virial coefficient of methane calculated above is By,
= —42.8 cm3/mol, which is in good agreement to the observed valuel®)
—Biper = —43.3 cm3/mol. The octopole moment of CHy assumed above
is certainly exaggerated with compared to the value of 2 = —1.1 x 10-34
e.s.u., as calculated by Buckingham and Stephen!?). For that value of
Q, the induced dipole-octopole interaction yields a contribution Bind-dip-octor
= —0.05 cm3/mol, and so plays practically no réle at all.
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TABLE I
Molecular data for some gases*)

gas | gk°K | oA | ax10%cmd | « | ©.10%es.u.
He 10.22 2.576 0.22 0 0

Hq 33.3 2.968 0.79 0.09 0.95

N2 91.5 3.681 1.76 0.18 1.80

Oz 113.0 3.433 1.60 0.24 1.90
COs 190.0 3.996 2.92 0.27 5.00
CHy4 137.0 3.882 2.60 0 o]

*) We used for the force constants ¢/k, and ¢ values determined from
viscosity measurements tabulated in the monograph of Hirschfelder
and al1?), and values of @, and x = (x||— « )/3e givenin the Landolt-
Bornstein Tables15). The values of quadrupole moments of molecules
were assumed to be have the appriopriate magnitude in order to get a
satisfactory agreement between the calculated and experimentally
obtained values for the second virial coefficient.

TABLE II
Comparison of calculated and experimental values of B in cm3/mol.
T = 298.2°K
gas Beentr Bdisp Byuad-quad Bind. dip-quad Beale | Bexper
H: 1452 | —0.01 — 0.46 —0.33 13.72 13.7018)
Ns — 3.0 —0.5 — 0.8 —0.4 — 47 —  4,7118)
Oz —12.8 —-1.0 — L8 —0.1 - 1587 — 15.017%)
COs —88.6 —6.0 —29.7 2.2 —122.1 —123.618)
TABLE III
Calculated and experimental values of Big in cm3/mol
T = 298.2°K
. centr disp quad-quad ind. dip-quad
Mixtures | Bjg I Byg | Big Big B12,cale B12,exper
He-Ng 16.56 —0.02 0 —0.07 16.43 12.512)
11.118)
Ha-Ng 12.8 —0.1 —0.6 —0.5 11.6 12.819)
Hy-CO2 3.6 —0.4 -3.0 —1.8 — 1.6 — 1.118)
Ng—CO2 —32.6 —1.7 —5.4 —1.5 —41.2 —42.616)
02—-CO2 —39.6 —0.8 —7.5 —0.6 —48.5 —~58.312)

Table III brings the various contributions to the second virial coef-
ficients for collisions between two unlike non-dipolar molecules, calculated
on the basis of eqs. (42) and (44) with help of the molecular data given in
table I, and with the combining laws for the force constants!?):

o1y = §(0s + 0y), ey = (eagy)t. (50)

As it can be seen in table 111, the contributions to Bjg arising from directional
molecular interactions are, in some cases, so large that they cannot be
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neglected compared to the contribution from central intermolecular forces.
In conclusions a sufficiently good agreement between the theoretically
computed and measured second virial coefficients may be obtained, as it
follows from tables IT and III, when the numerical values of the molecular
quadrupole moments for Ha, N, Og and COg are assumed to be:

Oy, = 0.95 X 10726 esu., Oy, = 1.80 X 10726 e.s.u,,
Oy, = 1.90 X 10726 esu., O, = 5.00 X 10726 es.u.

The numerical values of quadrupole moments of Ng and COg molecules
deduced from microwave pressure-broadening data are20):

Oy, = 1.50 X 1072 esu., Oyy, = 3.10 X 10726 e.su.
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ERRATUM
Second virial coefficients for unlike non-dipolar molecules,
[Physica 28 (1962) 5111
by S. KikLicu
In eq. (6) the factor preceding the last term, describing the induced dipole-
octopole interaction, should be 1/450 instead of 1/500. Thus, all terms in

eqs (13), (20), (31), (37), (40) and (41) proportional to the square of the
octopole moment have to be multiplied by 10/9.



