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The molecular Cotton-Mouton constant C,, for imperfect gases and their mixtures is repres-
ented in the form of a series: Cpp = Ac+Bge+-... The first virial coefficient Ag of this series
describes the magnetic birefringence of perfect gases. The second virial coefficient B takes
account of the influence of intermolecular two-molecule interactions upon the C,, constant.’
It is calculated for some molecular models. Tn these calculations, besides the usual central forces,
also anisotropic dispersion forces and various tensorial intermolecular forces arising from inter-
action between dipole or quadrupole gas molecules have been taken into consideration. Also,
additional contributions to By resulting from the existence of molecular electric or magnetic
fields in real gases are computed. Numerical estimations are given, which reveal the réle of the
individual molecular factors in the magnetic birefringence of real gases. Finally, general formulas
for the electrostatic interaction energy of two arbitrary charge distributions, and for inductive
interaction of such systems are derived.

1. Introduction

One can calculate the molecular Cotton-Mouton constant C,, from experimental data
on the basis of the following formula:
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Cn= Gy VG (L1)

where 7 denotes the molar volume of the diamagnetic medium with the refractive index n,
and C is the experimental Cotton-Mouton constant. On the other hand, the classical theory
of magnetic birefringence based on statistical mechanics gives the following formula for
the constant C,, of a diamagnetic medium (Kielich 1962):
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Here, m® is the o-component of the electric dipole moment of the p-th molecule of the
medium acted on by the electric field E of the incident light wave and the magnetic field H
causing birefringence of the medium. m™® is the v-component of the magnetic dipole
moment of the g-th molecule of the medium in the presence of the fields E and H. The
symbol {...> denotes the mean statistical value when external fields are absent (E = H = 0),
whereas 6, is the unit tensor.

In a preceding paper (Kielich 1962) the equation (1.2) was discussed for liquids and
their solutions. Also, a short review of diverse present theories of magnetic birefringence
for gases and liquids is given there.

In the present paper we shall apply Eq. (1.2) to real gases. It will be shown that the
constant C,, can be represented in the form of a power series in the density g:

C,=Ac+Bgo+ Coo*+..., (1.3)

where the successive coefficients of our expansion: Ag, B, Cg, and so on are termed the
first, second, third etc. Cotton-Mouton constant virial coefficients.

According to classical statistical mechanics, the first virial coefficient A¢ describes
a system of noninteracting molecules, i. e., the Cotton-Mouton eflect in a perfect gas. The
second virial coefficient B characterizes the two-body interactions of the molecules of
the system, the third virial coefficient Cg — three-body interactions, etc. In the case
when the gas is subjected to not too high pressure, the second virial coefficient B defines
the main deviation of the molecular constant C,, from its value for a perfect gas (i. e. from A¢).
This deviation is due to mutual interaction between pairs of molecules and, consequently,
the value of this departure gives us information about the type of intermolecular forces
and their role in the phenomenon of magnetic birefringence. Further corrections to the
constant C,,, defined by means of higher virial coefficients, will not be discussed in this
paper. We shall take up only the calculation of the second virial coefficient for several mole-
cular models of non-dipolar, quadrupolar and dipolar gases.

Similarly, we shall calculate the influence of various types of intermolecular inter-
actions on the constant C,, in the case of polar gas mixtures.

2. Non-dipolar gases

Spherical molecules. In the case of isolated spherical molecules, we have the following
expressions when external fields are absent (E = H = 0):
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Here, o and y denote the optical and magnetic mean polarizabilities, respectively; the
coefficients 7, and 7 determine the changes in the optical polarizability of the molecule

due to the magnetic field, in the direction parallel and perpendicular to this field, respec-
tively.
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By substitution of the expression (2.1) into the general Eq. (1.2) we obtain
Cn = 222 N (= ). 2.2
This result means that in the approximation considered the constant C,, depends
neither on the temperature nor on the density of the gas (see Buckingham and Pople-1956).

If we take into consideration the fact that in a sufficiently condensed gas there exist

molecular fields (electric field F and magnetic field @), the expressions (2.1) should be
replaced by the following ones:
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where we have approximately (Kielich, 1962):
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The tensor T characterizing the dipole-dipole interactions has the following form:
TEP = — 13 BrpgoTpgr — 15 Ocr) (25)

where the vector 7, connects the centres of the p-th and g-th molecules.

On substituting the expressions (2.3) and (2.4) into the general equation (1.2), we ob-
tain in the same approximation:
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In the following discussion of this equation we shall make use of a method similar to
that applied by De Boer, Van der Maesen and Ten Seldam (1953) in the theory of mole-
cular polarization of non-polar gases.

If O(ry...7y, ©;...0y) denotes an arbitrary function of the variables 1y..., 7'y determining
the position of the molecules, and of the variables ¢y, ... wy determining their orientation,
we have from classical statistical mechanics:
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Here, g® and g® are molecular distribution functions and ¢ = N/V is the number density

of molecules.
By making use of definition (2.7) we can represent Eq. (2.6) in the following form:
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In the case of moderately compressed gases the molecular functions g™ and g are given
by the following expressions:

g(l)(rl,w1)=_1.; Q=jdw1=fdw2,

s

e kT
8B (1,13, 01, 03) = —55- {1+0(0)}, (2.9)

where u;, is the total potential energy of the interaction of two gas molecules.
Let us take into account the definitions of the first and second virial coefficient of the
molecular Cotton-Mouton constant

Ac=1m C,, Bc=1lim {[c,,, — Ac) ‘;’} (2.10)
o~0

e-+0

By also making use of (2.9), we can represent Eq. (2.8) in the form of the series (1.3), where
A and Bg are of the form:

2n
Ac= ?N(Wll —1n1)s (2.11)
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Here, u(r) denotes the potential energy of the central interaction of two molecules; hence,
this energy depends only on 7, = 7.
Thus we have shown that if a gas consisting of spherical molecules is suitably condensed,

C,, is a function of the density ¢ and temperature T. By introducing the abbreviation
_ ), ~ _un
<ry = [T Wy =4 [rne war, (2.13)
]

we can write down the formula (2.12) for the second virial coefficient in the following form:

dn 2
Bo = 13 Na? {5<nu~m)+6,§‘—T}<r—6>. (214

Anisotropic molecules. If the gas molecules are anisotropically polarizable, then we
have in the first approximation under omission of the molecular fields F and G:
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where «,, and y,, are respectively the optical and magnetic polarizability tensors for the
molecule and 7, ,, is its magnetic hyperpolarizability tensor. All the tensors mentioned
refer to the p-th or the g-th isolated molecule, respectively.

By substitution of (2.15) into (1.2) and making use of the definition (2.7) we obtain
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On the basis of the formulae (2.9) and the definitions (2.10) we can represent the above
equation also in the form of (1.3), where the virial coefficients A and B, are defined by the
following expressions:
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In the expression (2.18) the potential energy U5 includes not only the central force
potential u(r) but also an additional energy resulting from tensorial intermolecular forces.
Further calculation of the formula (2.17) and (2.18) is easily performed with the help of the

transformations

n_ QA 1) @ _ .2 2 1 1 1 1 1
Oc(o'r) - wcu) wgﬁ “aﬂ ’ XVQ) - wv'y) w(()d) Zyd ’ 77571): v = ws.m) w(tﬂ) wgy) wgd) 77¢p; y6 > (2'19)

which transform the components of the tensors Gors Xve a0d 7)., of the 1-st or 2-nd molecule
from the fixed coordinate system (X,) to one of the molecular systems rigidly connected -
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with the individual molecules. The transformation coefficients wy, @ ..

cosines of the angles subtended by the axes of the fixed system with the axes of the respective

(1) . are the

.. oTw
molecular systems.

By assuming that the tensors a4 and y,; given in the molecular systems are fully
symmetric, and that the tensor 7,4, s is symmetric in the pairs of indices «ff and 9, we
may write Eq. (2.17) in the following form (after applying the transformation (2.19)):

27 1
Ac = 45N{3nwﬂ ap — Naa:88 + LT (3“¢/3%u/3 - “m%ﬂﬁ)} . (2.20)

The expression (2.18) will be discussed first for the case of non-polar molecules. Besides
the central interaction energy u(r), we shall take into account the additional energy pdise
resulting from London’s anisotropic dispersion forces (1942). In this case the total potential

has the following form (see Appendix A):
Uyy = u(r) — 5 hv (@R (2) —a?d, )T(u)T(lz) (2.21)

oT Y0
where a,, is the electric polarizability tensor of an isolated molecule, ¢ — the mean polariz-
ability of this molecule, ¥ — the mean frequency of electron oscillations, 4 — Planck’s

constant.
On substituting (2.21) into (2.18) and using the transformation (2.19), we obtain (see

Appendix B)
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When the molecules possess symmetry with respect to the 3-rd axis of the molecular
system, the following tensor components differ from zero:
Oy == Kgg = &g, Y11 = X2a = X2» On = e =0y,
X33 = &3, X33 = Xs3» Qg3 = A3, (2.23)
50 that the expressions (2.20) and (2.22) are now obtained in the following simplified form
(under the assumption 7,4, ,s = 0):
dn N
5ET
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Ag = 2% by 10y, (2.24)
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Following Langevin (1910), we have introduced the dimensionless quantities

6,, Oy 0y S Xs— X1 S ag — a4y (2.26)

30 7 * 3y 7 " 3a
which determine the degree of anisotropy of the optical, magnetic and electric polarizabili-
ties of an isolated axial symmetric molecule. Here, the quantities

o =350+ 204), ¥ =33+ 2%y, a =j5(az+2ay) (2.27)

denote the respective mean polarizabilities.

Quadrupole molecules. Let us now calculate By, for the case of gas molecules having
a permanent quadrupole moment defined by the tensor @,, (see Appendix A). The potential
energy of mutual interaction of two anisotropically polarizable quadrupole molecules is
given by the general equation (Kielich, 1960)

wp =ulr) =3 05 O TLD — %(al) 0 O+ a2 6Q O TOD T4, (2.28)

oY (31 Aue ove T TAu "

In this equation, the second term determines the quadrupole-quadrupole interaction energy,
and the third —the quadrupole-induced dipole interaction energy. The tensors 7., and
T,,,, characterizing these interactions are defined in Appendix A.

We apply (2.28) to (2.18) and obtain, on integration over all possible orientations of the
molecules

4aN
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In this expression, the first term multiplied by {778 results from inductive interaction
between the quadrupole and induced dipole, whereas the term multiplied by {710 results
from interaction of the permanent molecular quadrupoles. For axially symmetric molecules
we have (2.23) and @y = —20;; =~ 26,, = @. Hence, we obtain from (2.29)

9 2
o= B ON s ey v B o) (230

3. Dipole gases

Dipole molecules. The total potential energy of mutual interaction between two dipole
molecules is given by the following equation (¢f. Barker 1953, Kielich 1960):

2 2 1 12
e = () + 10 O TED — } (@DuD uD+ B TIITID . (31

Besides u(r), herein are included terms representing dipole-dipole and dipole-induced dipole
Interactions; s, is the o-component of the permanent dipole moment of the isolated
molecule. In the case considered we can apply in the first approximation the expression (2.18)
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for B.. Thus we obtain by inserting (3.1) into that formula

: aN
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For axially symmetrical dipolar molecules, the above expression becomes
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Dipole molecules with hyperpolarizability. Let us now consider the situation when
the molecular electric field in the gas is so strong that the dipole molecules undergo non-
linear deformation. In this case we have at E = H = 0 (Kielich 1962)

amﬁm 1 QF@)
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where F® is the molecular electric field inducing the hyperpolarizability of molecules,

defined by the tensors B,..., Vernor Svior 304 Mypipe
From the general formula (1.2) we now obtain (the temperature-independent part of

is neglected)
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The molecular field F¢produced at the centre of the p-th molecule by neighbouring dipole
molecules is given in the first approximation by the formula

¢

FP — — 2 TEN y® 3.7
r=1

r£p
By inserting into (3.6) and neglecting higher order terms we have
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By making use of the definition (2.7), we reduce (3.8) to

Cn= fog7 Eorne {ff D /D D, 0,) dry deoy +
o [ 02— a6+ B T — DG+ B T
X gB(ry, vy, 00,w,) dr,dr, dwydw, + ... } (3.9
Hence we obtain with (2.9) ‘and (2.10) the formula for the second virial coefficient
o= e [[[ven {5250 = 22 4 60D 780 — 2 02000+
,8(1) 1?) Tﬁ},z) + } e 5y dr dowy do,. (3.10)

We substitute herein the energy u;, in the form given by expression (3.1), obtaining

2N
3375 k272
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3.11)
where B is defined by formula (3.2).
For axially symmetrical dipole molecules, Eq. (3.11) reduces to
2087z u*N o
P BC -+ W {d6¢§6§+ x&xﬁép} <T 6>, (3.12)
where B is given by Eq. (3.3). The quantities
6; 63 /31 réf — _§3 - ‘51 (3.13)

T3 } 3¢

determine, respectively, the degree of electric and magnetic hyperpolarizability of the
isolated dipole molecule, whereas

B=5Bs+2),  E=3(6+28) (3-14)

are its mean hyperpolarizabilities. In these expressions we used the abbreviations:

ﬂu:a = .322;3 = I31a 53:11 = 53:22 = 51,
ﬂ33:3=ﬁ3’ 53:33=53-

Eqgs. (3.11) and (3.12) express the influence of the hyperpolarizability of the dipole
molecules on the second Cotton-Mouton constant virial coefficient for dipolar gases.
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4. Polar gas mixtures

For a multi-component system we have the following form of the molecular Cotton-

Mouton constant (Kielich 1962):

s
aN G 1 Y (G
Cm = ZS‘ 80‘1 vQ {Z (770'3 Vg + IT gzxag) +

kL ﬂ f D 5D oD (1, 04, ;) disj doo; dwj}, (4.1)

where ; is the mole fraction of the i-th component and s is the number of components of
the system. The tensors o«ff), %) and 7, (’)w retain their previous physical meaning with
the additional remark that they now refer to an isolated molecule of species ¢ or j.

In analogy to (2.9) we have now

A5 {1+ 0@} (4.2)

2
g:('j) (rij, wi, ;) =

Hence we can represent Eq. (4.1) in the form of the virial expansion

C, —ExA(’)-f-gZZxxB(u) (4.3)
i=1j=
where
AQ = 2N 3B — s + e B8 o2 | )
(112)
Be=g5 kT_Q2 j [f ses g (@D 4B 4 4 LD a@D) 7 T dirydwido; . (4.5)

Here u{® denotes the total potential energy of mutual interaction of molecule “1” of species
i with molecule “2” of species j.

The expression (4.5) can be calculated successively for molecular models analogous
to those discussed in sections 2 and 3. Let us, however, begin with the case of a polar gas
mixture. For simplicity let us assume that the molecules of all components possess the
axial symmetry. In this case, with the transformation formulae (2.19) we obtain

(1,:) =a;0,,+ ;0 (3 CO(l,z) w(l”) 8525 X(v2,]) = 700+ % 5“ (3(0(2”) g’:i) — 8, (4.6)

Hence, the second virial coefficient (4.5) reduces to
(i)
(i) v g 2 G -5
BE = SEToR (200, i 35055+ 2i0y, i 04 ;) (3cos2b—1)e drijdw;dw;  (4.7)

where 6$2) is the angle between the symmetry axis of molecule “1” of species  and that of
molecule “2” of species j.
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We substitute herein the energy in the form
uf = u (ry) + o7, (4.8)

where o{ denotes the energy of noncentral interaction of the polar molecules, defined in
Appendix A as the sum of expressions (A. 11) and (A. 16), and we obtain (see Appendix B)

; 2nN
B(]) PERT? (%:04,i 2 0g, 5+ %i 0y,i0;0 GJ){(G'i Oayi 17 + 117 @;0a,5) <rg®> +
41/”12/1;2 2 2 2 2 12
+ sogege L7 @i+ i ag) + 1@, i3+ 170 0a,)] <1 ™> 4.
12 u?n?
oL (< >+ gopape <1 12>+...) +
% {3((1,64, O+ O%a;0,,;) {ri®> + @2 O (rt %> +.. ]
-+ BT [(1“12 @2+ O )<rt18> 12@ @JMJ gty +. ]} (4.9)

In the parenthesis {...} there appear successively terms resulting from the following inter-
actions: dipole-induced dipole, dipole-dipole, quadrupole-induced dipole, quadrupole-

quadrupole and dipole-quadrupole.
In the above calculations let us moreover take into consideration the anisotropic
dispersive forces, which give the following expression for their energy v{¥ (see Appendix A):
3 V; ’Vj a; ay

v = 2 p
12 47 vt 1

{6‘,’,'—{- 6a,j -3~ 6a,j) (3‘,’,' cos? §; —
—3(1 — 84,;) dg,; cos? 8; — 30,045 (cos B;; — 3 cos 0; cos 0,«)2}. 4.10)

On substituting this expression in Eq. (4.7), we obtain the following contributions to B
resulting from anisotropic dispersive forces (see Appendix B):

3nhN Vi v;

@) _ .
Be T 125k272 v+

;04,ij 04,5 (i Og,i %Oy, +

3h vy
+ 2i0y,i% 0a,j) {(r,, >+ 08kT » ]"

,'(Lj[4<9——
— 14 (8,4, i+ d4,7) + 38 0,,:64,5] <r,~‘,-12>+...}. (4.11)

For a one-component gas we obtain from (4.9) the previously proved formulae (2.30)
and (3.3), while (4.11) reduces to (2.25).
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5. Discussion and conclusions

Let us estimate numerically the second virial coefficient B, for the Lennard-Jones

(6:12) potential (1924)
o \ 12 o \®
u(r) = 4e {(—r—) - <—;—) }, (5.1)

which allows us to express (2.13) in a simple way by means of the functions H,(y), which
were tabulated by Buckingham and Pople (1955). We have namely

on & m—+n— 3—n
R T e P

where y = 2 (¢/kT)" , and o and e are well-known central force parameters of the dimen-
sions of a length and energy, respectively.

With the help of (5.2) we represent the expression (2.14) in a form suitable for direct
numerical estimation:

4?a?N 3y 2y?
Bc = oY {5(’711 — L)+ —58—} Hg(y). (5.3)

We have the following data for methane!: ¢ = 3.882 &, &/k = 137°K, « = 2.6X
%1072 cm?®, g = —20.3 X 1073 cm?, and #); = —212x10~%e. m. u.,n; = — 356 x 10—
e. m. u. (these valeus of %, and 7, are four times larger than the appropriate values calcu-
lated by Buckingham and Pople (1956) for atomic hydrogen). Thus we obtain on the basis
of Egs. (2.11) and (5.3) for T = 280°K

Ae=1.8x10718,
Bg = (244.8+4-2.2) x 10744 = 247 x 10742,
Let us represent Eq. (1.3) in the following form:

Cp=Ac(1+Bgo+ Coo?+...), (5.4)
where

Bt =BglAc, Ci=ColAc, ...
By (5.4), we obtain for CH,:

C,=18x%x10"8(1+1.4x10"24p em3+ ...).

From this we see that there is only a slight influence of central interactions on the constant

» 0f methane under not too high pressure.

1 In the present paper we draw all data for ¢ and ¢ from the monograph of Hirschfelder, Cuitiss and Bird
Molecular Theory of Gases and Liquids (Wiley, New York, 1954), and all values of a and y from the well-known
Landolt-Bornstein Tables, Vol. I, Part 3, 1951 (J. Springer).
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For quadrupole gases we obtain, on the basis of (2.24), (2.30) and (5.2),

. _ mO* 6a 6 @2

Let us take into consideration carbon dioxide with the following data: ¢ = 3.996 A,
elk =190°K, 3ad, =2.11 X10724 cm?, 3ad, =2.35 %1024 cm8, @ =5x10"28¢. 5. u.
Formula (5.5) vields in this case for T = 300°K

Bg = (0.4+9) X 10724 cm® = 9.4 X 10-24 ¢m?

It results from this formula that the contribution to By, due to quadrupole-induced
dipole interaction amounting to 0.4x10-24cm3 is much smaller than the contribution
9x10-24 cm? from quadrupole-quadrupole interaction.

In the case of dipole gases the second virial coefficient By (3.3) reduces to the follow-
ing form when (5.2) is used:

. 644, vt (74118,
BC 9008{0’3 2 [ G(y)+ 196 2 ( 6a )HIQ(y)+]+

i [ o |} 69

We have the following data for chloroform: o =543 &, ¢/k = 327°K, 3ad, =
= —2.33x107% cm?, ;i = 1.05x 1018 ¢, 5. u.
Hence, we obtain from formula (5.6) for T = 375°K

= (— 0.8+ 3.9) x10~24cm?® = 3.1 X 10724 ¢ 8,

The contribution to Bf; from dipole-induced dipole interaction is negative and five times
smaller than from dipole-dipole interaction.

From Eqgs. (3.3), (3.12) and (5.2), we obtain for hyperpolarizable dipolar molecules
* o 137! { 56 -’S(S

hyp _ ! 8 &

Bc™ = Bo+ 225 g03y? {océ xé }HS( ) 6.9
where By is defined by Eq. (5.6).

The electrical hyperpolarizability anisotropy for the CHCI; molecule is 3805 = f3—
— Py =—25x10"®e.s. u. (Kielich, 1962); hence, we obtain from Eq. (5.7)
Bl _ gty (9.3 +8.7 _5%_5_

x

X 105) X 10~24¢m3.

We see that the influence of the electrical hyperpolarizability alone on the second
virial coefficient B is considerable and that this contribution amounts to three times the
value of B = 3.1} 10724 cm?® calculated above.
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Let us finally consider the influence of London’s anisotropic dispersive forces (1942)
upon Bg. For this case we have the following formula:

7103 02 4 38
* = ___51. 2 e il 2
Ll T {He(y)er (1 = datlzg 6,,) Hm(y)—l,-,__}, (5.8)

which can be derived from (2.25).
On the basis of this formula and the numerical data given above we obtain for CO,

B = 6.3 x10724 cm?®
and for CHCl,

B =5.2x1072% cm3.

On comparing these values with the contributions calculated above we see that, in the case
of such gases as carbonic dioxide or chloroform, there is a notable contribution from aniso-
tropic dispersive forces to the value of Bg. The total value of Bg for CO, is thus

B = (944 6.3) X 10724 cm? = 15.7 x 10724 em?
Hence we have, on the basis of Eq. (5.4),
C,, = 25.5%0, X102 (1 4 15.79 X 10724 cm?).

From this we see that for CO, under a pressure of p atmospheres and at T = 300°K the
influence of intermolecular interactions on the constant C,, can be given approximately
by the dependence Byp =4 px10~*atm ™. Since y = —34.5X 1073 ¢m3 and it can be
assumed that |6,| = 0.1, it is evident that the value of the constant C,, for CO, is of the
order of 10716, which should be experimentally measurable.

We may call attention to the fact that for anisotropic axially symmetrical molecules
we have the following relations:

A¥®  BY*®  260%kT b,

= 5.9
Ac Bc 24 X(Sx ( )

between our virial coefficients A, and B and the virial coefficients A and B¥® which
were calculated in a preceding paper (Kielich 1960) for anisotropic light scattering in
imperfect gases; here, A denotes the light wavelength.

By making use of expressions (4.9) and (4.11), we obtain for a polar gas mixture

@ _ oy N g I
B = —zi (%i0a,i%i02; + 2i02,1% 0a,)) 484,:00,; [Y5* Holys) + Hg (yg) +---1+

1 B 19
+ 35 [(aiM?Jr#?af) ve 'ET‘}} — 8204,i04,7 | 0a,i+ 0a,j = 7 0a,i0a,j Hy, (vi) +

1 2 2 11/1121“723’% ]
+ £ij0'?j_%2j (@i, i+ i a; 0a,5) [Hs(y11)+ 1968%0% Hy(yg)+--- |+
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2,2
Hi My o /h }’v 5
12 5ol [HG Ori) + 196 &2 0§ i (yi,)+...] +

15 2 . 0: 03y}
78,] z]y” [(az 6(1 z@ -+ @ a; a,I)H (yu) + ——_8—;7_21 Ho(y”) +.. ]
—._._._5 — 1
283, 2 [(/t O} + OF uf) Hy(vy) — guy(,]s} w2 0;0;uf Hy, (v;) +.. ]+ } (5.10)

In the case of a two-component gas mixture and by Eq. (4.3), the molecular Cotton-Mouton
constant is given by the following series:
C,, = 5, AD + 25, AP + (x2BEY - 20,0, B 1 42 BED) 0 4- .., (5.11)

where xy +x, = 1.

For the mixture of a quadrupole gas (1, = 0, @, 7 0) and a dipole gas (u, £ 0, O, = 0),
we obtain from (5.10)

2n20iN i} 4 38
BEY = 375137 %100, %1071 {253,1 [}’12 Hy(y,) + (1 = Oa+ 9 53,1>H12 () + ] +

15 ©32 63%y3
-+ 771;“—%3,1% [a’l a1 Ha(y1) + y Hyg(yy) + .. ]} (5.12)

( o N _
¢? = 750113T (o1 0a,1 %2 Ox,2 + 21 Ox1 %2 Ot 2) {4@1,1 04,2713 H(y19) +

+ 4‘6a,1 6(1,2 [ (6a,1 + 64,2) + 6a’ 6a,2 :| 12 (y12) +
304,113 1563 PErE
0 "N H, 1
" &1 082732 Hlyu) + Te10 082770 g Oap + 5 — 126, s(r1) + .- (s (5.13)

2n2 6§ N
(
022) 375/:1" % 6%2 X2 67(,2 {2611 2 I:yz 6(9’2) +

4 38 '
+ (1 — = baat g am) Hyo(ys) + ] T

ay 6 2 M3 /‘%y% 7+116a,2
+ & Gg 2 [He(yz)‘l' 196 62 o5 P Hpyp(y)+ - |+

¥

4
Ha 3usys
+ 43 o8 [H6(y2)+ 196 c3ot Hyy(ys) + ] + } (5.14)

The above expressions are suitable for direct numerical estimations if we know the mole-
cular parameters appearing therein.

Similarly, one can apply Eq. (5.10) to more complicated gas mixtures.

From the numerical estimations carried out above it follows, first, that whereas the
inductive interactions of the molecules play no réle in some cases (e. g. CO,), in others
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(e. g. CHC;) they may give such great contributions to the constant C,, that one cannot
neglect them in comparison with the contributions resulting from the quadrupole-
-quadrupole or dipole-dipole interactions. It is obvious that the latter interaction types
will prevail if the molecules present a very great dipole or quadrupole moment. It also
appears that the nonlinear effect causing hyperpolarizability of dipolar gas molecules exerts
an outweighing influence on the constant C,. 4

In the case of gases consisting of nonspherical molecules the total numerical value of
the second virial coefficient B, depends in a high degree on the anisotropic dispersive
forces.

It thus appears that systematical investigation of magnetic birefringence in imperfect
gases, though experimentally difficult, will contribute valuable data relating to the electric
and magnetic properties of isolated molecules, the nature and type of the various inter-
molecular forces, and their réle in the microscopic mechanism of magnetic birefringence
of diamagnetic fluids.

APPENDIX A

Potential energy for the tensorial interaction of polar molecules. The potential energy
of interaction between two arbitrary charge distributions (e. g. molecules) i and j can be
represented by the following expansion:

= = 0~ WP TP 3 OQFD—
- 1 Qs'jr)vFéj'?v 105 Qts]'r)ngts{[)ve T ey (A~ 1)

where
=> e](”),
n
(J) - 2 () (n)

n

@()) =1 Z RO (3,(7:) m_,2 4 )

o Tix Tin Og1)

oty

09 1 3 O {Sr(") ) (n) (,(n)a (n) 5w+r§.:> )
n

17,35 ) - Z (n){35 ,(n) (n) (::) () __ 5,; (r](;') r}? 6”04_

oV
n

Am (n)é +r(”) (n)5 +,(n) (n)5 +,(n) (n)(; +

Tie ]v jo jil

-+ r(:l) fg) 50‘1:) + r4 (601 v0 + av rg dQ vt)} (A 2>

denote the electrical multipole moments (unipole, dipole, quadrupole, octopole, hexade-
capole, ... 2%-pole) of the charge distribution j; e is the n-th electric charge of the j-th
charge distribution and ’I'J(-”) — its radius vector.
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The potential and the electric field at the centre of the j-th charge distribution due to
the electric charge of the i-th distribution are given by

@; = __' +,uf,') Tf,") — % @((;3 Tffi)*‘%g(') TG _ LW 7@ 4 (A. 3)

Gy~ o1V 105 ~ oTve © oTve
Tij

FO = —V, =T e;— TR+ 1 TH 00— LT 0O 4 . (A. 4)

oy arve =“ rvo .

wherein the tensors

i 1 o _
T(()']) = Vcr (_) = % = rij2lu’

T

I','i

1) =i

Tt(;{t)v = Va I7't Vv ("_1—) = 3’;'_]'4{510 }-1 Av - (Zo' 6rv+ 2"!’ 6vo'+ Avéut)}s

i
1
r

if

TS =~ VoV V,V, ( ) = — 3r57{35 Ag Ar A Ay — 5(Ag Ar Oyg + Mg Ay Ogs + Ay Ao O+

+ l@ z'a 61v+ Aa }-v 61@ + lr lg 601:) + 601 6::9 + 609 619 + 509 6v1} H (A*S)

characterize respectively the unipole-dipole, dipole-dipole, dipole-quadrupole, quadru-
pole-quadrupole etc. interactions; 4 = (4;, 45, 45) is the unit vector in the direction of the
vector 1; =¥, —¥; = Ar; connecting the centres of the interacting charge distributions,
and [, is Hamilton’s differential operator.

By the expansion of Eq. (A. 3), the electric field gradient, gradient of the field-gradient
etc. due to the i-th charge distribution at the centre of the j-th charge distribution are

FQ =V, V gy = T, TR+ LT, 09— .,

aTve
Fz(rjr)v = Vo Vr Vv(pj = Tg{r)v € — Tz(;‘]r?uglu(gt) +
FO, =V, V.V, V=T e, ...,... (A. 6)

Substituting (A. 3), (A.4) and (A.5) in Eq. (A. 1), we obtain the general formula
for the tensorial interaction energy of two charge distributions:

vy =" — (e — pQ ) TP + uQ P T — 3 (e; O + 03¢) T +
Yy
+1(d 0D — OD D) TD, — L (e, 29, — 09, ) TH,+ L (4P Q9+ Q8 1) T, —
! : o . .
— (36,0, + 35 0NN+ 309, &) TH, + ... (A.7)

For a charge distribution axially symmetric about the 3-axis, each multipole moment
is completely specified by a single scalar quantity:

M=z, O =0y=—20,=—20y,
Q=043 =—20y; = — 2015 = — 20, = ... = — 204y,
D =Dy = — 2035 = — 2Py =— 2Py =... = — 2Dypp3 = % Dy = 3@2222 =805, =
= 8D1p9) = 8Pppyy = ... =8Dypy. (A.8)
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By (A. 8), the multipole moment tensors for axially symmetric systems are:
O = 5O,
09 =36,39sP—6,.),
08, =12, {59 PP — (9 8,,+ 58,0+ 596,)},
@ffzw =31®; {3555,‘)59) sE,i) SE,D — 5(sff) s(,i) 0,0 + sg)sf) Oy + s® sg) Oyr +
+50 508, + 550 8g + 8750 85,) + 0, 0,0+ G5, 00+ 050001} (A.9)

where 8 = (s1, Sp, 55) 1s the unit vector along the axis of symmetry.
JTaking into account expressions (A.5) and (A.9) and keeping in mind that
sg)sff) = s(;’)s(,,j) =1, s® sg) = cos 0,

dedg=1, 92, =cosb;, DA = cosb, (A. 10)

we reduce expression (A. 7) to the form (for comparison, see Margenau 1939, Buckingham

1959)
vy = e;e;15 1 — (e 14; cos 0;+ e p; cos 0,) ri® — w; u; (3 cos 6;cos 6,—
— 03 0,) 172+ 3{e; ©;(3 cos® 6, — 1) + ¢;0,(3 cos? 6, — 1)} r57>+
+3{u; 0;(5 cos 0; cos? 8; — 2 cos 0, cos 0; — cos 0;) —
— 11;8;(5 cos? B; cos 6; — 2 cos 0,; cos 0; — cos 0))} 757 * —

— §{e; 2;(5 cos? 6; — 3) cos 0;+ €;42; (5 cos® ; — 3) cos 0} r7t+
+£0;0;{1 —5(cos? 0,~+3 cos? 0; cos? 6; + cos? 0;) + 2 (5 cos 6; cos 6, —

— cos 0)% r® — 3 {u; £2,(35 cos §; cos® 0; — 15 cos 6,; cos? §; —

— 15 cos 6; cos 6 +§_Eos 6;) + u; !&95 cos® 0; cos 6, — 15 cos 0;; cos? §; —

— 15 cos 6, cos 6, + 3_25 0} 7+ {e; D;(35 cos* 6, — 30 cos® §; +3) +

+ €; D; (35 cos* 6; — 30 cos? 6,4 3)} r,-;5 — ey (A.11)
where

cos 0; = cos 0, cos 8+ sin §; sin 0, cos (¢ ,— ¢;), (A. 12
i i i i fj Pl 1

and , is the angle between the symmetry axes of the i-th and j-th charge distributions;
6, and 6; are the angles between these symmetry axis and the unit vector 4, while ¢; and
@; are the azimuth angles.

Generally, one should alse consider the additional potential energy arising from the
inductive interaction of the charge distributions, i. e. from the interactions between the
permanent charge distribution of one system and the moments induced in the other
system. For anisotropically polarizable systems this is given by

vt = — 3 (@QFOFO+ IFPFY), (A. 13)
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and hence, by (A.4), we have
= — e+ ae,e) TOTO 4
a2+ o) T T~
QD1+ D9 ) TTY
—02e;0F + all e, O TP TR+
+ 3R 0 + aQuP O TP TR+
- e 0+ a2, 00 TOTE,

— (e

— 15 @2 0F, +aQuP ) THTE,
~ 15 (af) OF 02+ a6 69) TH TH +
E 0L, + oDV LL) TR TS, —
~ 4 (R0 O+ A EQIG) TR Tt |
In dealing with axially symmetrical systems, we can express the tensor af in the fol

(A. 15

(A. 14)

owing form:
agz = a’iéar + a’iaa,i (331(;)8(-:) - 601)'

Taking into account this formula and the expressions (A. 5), (A. 9) and (A. 10), we obtai

from (A. 14) (the terms with octopole moment have been omitted)

nd — _14a; ef +e? a;+ a;0,; ej2 (3cos?6;—1)+a; 6%,-6? (3cos?h, — 1)} rit —

Yi
— {2a;(1— 8,,;) e 11,008 0+ 2a; (1 — 8, ) e, p1; c0s 0+ 3(a 8, ;4 co8 6+
+ a; 0, ;¢;11; cos 0,) (3 cos 0; cos 0; — cos 0,)}ri® — +{a; (1 — 8, ;) i} (3 cos? 0;+ 1) +
+ a; (1 — 8, ;) 447 (3 cos? 0;+ 1) + 3(a; 8, ;47 + uf a; 8, ;) (3 cos B ;cos §; — cos 0,)%} r® —
—3{a;(1—0,7)€;0;(3 cos? 6; — 1)+ a;(1 — 68, ;) €;0,(3 cos® 6, — 1) +
+ 3a;48,;¢; ©;(5 cos 0; cos? 6; — 2 cos 0;; cos 6; — cos 8;) cos 0;+
+3a;0,,;€;0;(5 cos? §, cos 8, — 2 cos 0, cos 0, — cos 6,) cos O;}ry® —
— ${4a;(1 — 8, ) p; ©; cos® B, + 4a; (1 — 6, ) p; @ cos® 6, +
+3[a;0,;1; 0;(5 cos 0; cos? 6;— 2 cos 6,; cos ; — cos 6,) +
+a; 0, :4; 0; (5 cos? 0, cos 6; — 2 cos 0;; cos 0; — cos §;)] (3 cos 6, cos 6; —
— cos 0)} ;7 — ${a;(1 — 6,,;) ©F (1 —2 cos? 6;+ 5 cos* §;) +
+a;(1—9,;) 07 (1—2 cos? ;45 cos? 0,) + 3a,;6, ; O (5 cos 0; cos® ; —
— 2008 ;cos ; — cos 0,)2 + 3a; 8, , 0% (5 cos? 0, cos 6; —

2 - 8
— 2 cos 0, cos 0; — cos 6,)%}r7% — ...

)

n

(A. 16)
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In the first approximation, we can neglect the electric anisotropy of polarizability,
0, = 0, and Eq. (A. 16) now reduces to the simpler form derived by Hirschfelder, Curtiss
and Bird (1954):
v:]“d = — L (q, e]? +e? a;) r,-J_-4 —

— 2(a;e; p; cos b+ a;e;pu; cos 0;) ry®

— a3 (3 cos? 6, + 1)+ a; u? (3 cos? 0,4 1)} ®

—3a;¢;0,(3 cos? 0, — 1)+ a;e; 0,(3 cos? 0, — 1)} ® —

— 6 (a;u; 0; cos® 0+ a;u; 0, cos® 6,) r; T —

—#{a; 07 (1 — 2 cos? 0;+5 cos? ) +

+a;0F (1 — 2 cos? 0+ 5 cos* )} ry ® — ... (A. 17)
London (1942) obtalned the following expression for anisotropic nonpolar molecules

with axial symmetry:

ug®® = —{(4 — By — By + C) (cos 0; — 3 cos ; cos 6))%+ 3 (B; — C) cos® 0, +

+3(By — C)cos? 0;+ B, + B, + 4C}r; %, (A. 18)
where
hoa o i h<><)vvfi)
A= 4“'7 aif NONNOR B, =3 aj’al <:)“ 6k
+v v+ vy
b gy Yoo h oo o v
B2 4 a_La” (‘)+ (]) C = 44—‘a_|_ GJ_ W. (A. 19)

Herein, » ﬁ) and ¥ denote the frequencies of anisotropic oscillators for vibrations in the
directions parallel and perpendicular to the symmetry axis of the i-th molecule; 4 is the
Planck constant.

On taking » =v) =», we can represent Eq. (A.18) in the following form:

disp _ é Vivi Qg a] ) 24,
s ) h FSTE ) {2 — 04— 0a,j+ 3(1 — d4,j) 0g,i cos? 0, +
+ 3(1 — 84,i) 84,5 cos? 0;+ 304 0a,; (3 cos 0; cos 6; — cos 6;)%}. (A. 20)

For two like molecules, this expression becomes identical with the one given by De
Boer (1942).
On separating the expression (A. 20) into a contribution from central dispersive forces

3, vy aigy oif ¢
- = = .21
2 U rrapmn vitv; 1% — ey ( i)’ (A.21)

and a contribution from noncentral dispersive interactions
6
vglsp = 2¢;; (%) {04+ 0a,; — 3(1 — da,;) Oa,i cos? 0; — 3(1 — 84,3) O, cos? 0; —
i
— 364, 84,7(3 cos 0; cos 0; — cos 0;)%}, (A. 22)
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and on taking into account central repulsive forces, we obtain the total potential

G 12 ; 6
e

In the case of molecules of one type, the expressions (A. 22) and (A. 23) become identical
with the potential used by Pople (1954) and Buckingham (1955).

In the case of nonpolar molecules of arbitrary symmetry, we obtain instead of (A. 20)

disp b viv; oD D 7t <u)
u,, = Zﬁ T ,,QT ] (A. 24')

For isotropically polarizable molecules we have a,, = a d,,; hence, we obtain from

(A. 24) London’s original expression (1937)

disp h v 14

3, vy a,a,
wij = a;a; 5h—"
T Aty

2 vty r,.,-

a0 TPTH = — (A.25)
Obviously one could also obtain (A. 25) by averaging the expression (A. 24) over all
possible orientations of the two anisotropic molecules. After subtracting (A.25) from
(A. 24), we obtain the energy resulting from the anisotropy of dispersive forces alone:
disp __ h ’V,'Vj‘

QPN C) @) )
) “E vt (e a a;0;0,.0,)) Tp) Trp. (A. 26)

ot ““re i a7 “ve

With (A. 21), we can put expression (A. 26) in the following form:

pdise _ 2 €0y of;

(t) (J) S
ay a;a;
v E) a;a; (

5,) TS TS, (A. 21)

o1 Ve

From this expression and from (A.15), we once more obtain Eq. (A. 22) in the case of
axially symmetrical molecules.

APPENDIX B

Method of calculating contributions te Bg resulting from tensorial intermolecular
forces. The total potential energy of mutual interaction of two molecules can be represented
in the form

Uy = u( ]) +vz]’ (B. ].)

where u(r;) is the central interaction potential energy and v; is the tensorial interaction
energy of molecules discussed in Appendix A. If we consider the energy v; in Eq. (B.1)
as a perturbation to u(r;;), we can rewrite the second virial coefficient B deﬁned by (4.5)
as follows:

o] n u(r,])
@ N o1 [ 1 [ @ TR g
B = 5557 2 ( i) ) e i s ®-2

where the quantity

I = ] f s (02D 7D wlideryd, (8.3)
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determines the successive contributions to BY) resulting from the tensorial intermolecular
forces v;.
At first we shall show that J§” = 0. On applying transformation formulae analogous to

(2.19), we write

1 .

_("jsz 0D dooydeo; = o) 708 OPO D00 o, (B. 4)
Since

— 1
w(g)w%_ -Qf o® (’)dw - gazﬁaw (B. 5)

we obtain from (B. 3) for n =0

Eor 1oz O Oare () 4 TN + 2305 04p 00rpr

T
€4 :c’a'(aixj+ Li O(j) = O’ as &6 070" = 0’ (B 6)

which is just the result we should obtain. ‘

Let us now calculate the quantities JI, J, ..., for the case of nonpolar molecules
between which anisotropic dispersive forces act. Taking into account Eq. (A. 26) and the
transformation formulae (2.19) we obtain

1 h vy

oL f[ oy v de; dar, = — T _"_]y {28 a8 4D, ald), x

(t) (t) w(’) ) }T(ti)T(u)
B.7)

X 0% 08 ) 0 + o), o) o) 0l — aBa, 1) a;6,,0,,

We now substitute herein Eq. (B. 5) and the following expression (see Kielich 1961):
C"g;w(;;; w% gg = X1(: {(461;8 61/6 ﬂé - 6:6 6;37) 601 6119 +
+ (404y 055 — 02605, — Oap 0y8) Ogy O+ (461,5 g, — Ogp 06— 04y Ops) 050,03 (B. 8)

Hence we obtain:

a [ [ dw‘iw‘—f;%a - (108313 aS) —
A905) BTOTD — 8, TOTE) by, 1080 al) — D)) 1aPOTP T —
8, TOTE) 8,1, + (363 0 — o2 a)) (3x"’ D — 7Dagl) OTHTH +
+OTGTH — 65, THTH — 60, THTH + 20,0, TVTH). (8.9

With respect to (B. 9), we obtain from (B.3) forn = 1"

. h v .
wa:_@aﬁv,--’{—lv (36808} — of, af)) (315 0 — 43 o) +

+ Bl — 1 Q0 BxPah — P} TH TS, (. 10
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Analogously, we calculate further contributions J&; the most important of these, J5),
has the following form:

. 2 . . 2 » » . - I - . .
K= ( e ) {712 (ADBY + BPAP) — 1(ADAD 4 ADAD) 1

396900 \»;+ v,
+ 2(4PBD + BAMNTPTDTIHTS — sTHDTHTDHTS) 1
+(BPBY + BPBY) (12THTOTHTE — 17TDTHTSHTD), (B.11)

where we have used the notation

A9 = oG =) o AD = @40 —12a) o),
B = 80u 00— o) ~ 240, BP = 30100 — 12 ff) 249,
(B.12)
On substituting (B. 6), (B. 10) and (B. 11) into Eq. (B. 2) and on taking into account
that, by the definition of Eq. (2.5),

TOTY = 6138, TOTDTETE = 181512, (B. 13)
we finally obtain: R
Gy _ __ whiN vivi ) L@ 6 4Gy -6
B¢’ = 121500 k272 9, + v; {ai a; (Aan " Ax Ag°) {rij >+

n 3h vy
OB ET i+ %

(49424 + AP AP) — 14(APBP + BOAY 1
+ APBD + BPAP) + 38(BOBY -+ BOBDM)] (r7 12 + } (B. 14)

For axially symmetrical molecules we have, from (B. 12),

Ag) = Sda; 6¢,ia?6a,i’ Bg) = A(ui)‘sa,h
Ag:) = 54y, 6x,ia,-2(§a,i, Bg) = Ag)éaﬂ-. (B. 15)

With regard to this the expression (B. 14) reduces to the form
B(,‘j) - _375}LN Vv
© T 125K v+ 9

3ha; a; ;Y
9BLET v+ v

;84,05 00,j(%; On, i O, i+ 2i Oy “}5%3 {(’i'f_'6>+

[49 — 14(84, i+ 84,) + 3804,:04,7] Criy 2> + } (B.16)

For chemically identical molecules we obtain from (B. 14) and (B. 16) the expressions
(2.22) and (2.25).

If the molecules possess the axial symmetry, we consider (4.6), and the quantities (B. 3)
go over into

J',f"") = 18(«; 6(:,:' X 625,1' + % 6::,1' %; 6¢,i) Qﬁlij)’ (B.17)
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where

(") ff 3cos? 0;; — 1) v jdw;dw;

= 161712 / sin Oidﬂ,-fdtm [sin doejfd(pj(g cos? B;;— 1) vl
0 0 by 5

(B.18)

Let us calculate the quantities Q% for polar molecules of different kinds. We take into

account the following integrals:

where £ = 0,1,2,3, ...

1
v ———= for n = 2k,
—;— fcos" 0; sin 0;d0; = 2k+1 (B.19)
0 forn =2k+1,
n 2k — 1)!!
1 —(—zT—kZ—— for n = 2k,
o f cos®@;dg; = (B.20)
o 0 for n =2k+1,

trigonometrical functions:

cos? 0;; = % s

cost 0; = %,

cos® 0; = %,

cos? 0;; cos® 0; = %,

cos? 05 cos §; = 1—15,

cos? 0 cos? f; cos?® 0; = 21?15,
cos? 6 cost 0; cos® 0, = 51—275 ,
cos? 0, cost 0 cos? 6, = 1%;—5,
cos? 0;; cos? 6, cos? §; = 51—275,

On taking the sum of the expressions (A.11) and (A. 16) for the energy v;

(B. 21), we obtain

= — (@ +

|€?w‘ Q |

=% ?u, pi0,0,r; " —

j'i

2 _
1y @) T

=23l g4 (uf OF + OF ) 1 + 2 OF OF 5™,

cos §;; cos 0; cos 0; = +,

cos 0,5 cos 0, cos 0; = IIE ,
cos 0; cos? §; cos? Bj = 21—5 ,
cos 0;; cos® §; cos 6; = éli ,
cos 0 cos® 8, cos® 0, = :%5 ,

5 50, = 1
cos ;; cos® B, cos®0; = &,

3 =1
cos? §,; cos §; cos B; = %,

cos? 0 cos® 0;cos 0; = L

+ Ma; 0,18 + pf a; 5‘,,,)}4‘12

-12
v = 25 ,u ,u rgT A

Thus we obtain the following non-zero average isotropic values of

25°
cos? 0, cos® 0;cos®0, = 12%,
cos® B; cos 6, cos 0; = 21 y e (B. 21)
;» and by Eq.
8 — 2,07+ O7a)r;°,
e iF {5l pf + i @) +
(B. 22)
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cos? O v, = — %5{25(ai,uf + pu? aj) + 16(a; 6a,i,uf + ,u,? a; 6‘,,]-)} r,-J_-6 —
— %{35((1,- 9]? + 6?2 a;) +4(a;0,; @? + 62 a; 0.} r;s s

e h 26 ,2,2 -6, 13,202 92,2 -8 38@2@2, 10
cos? 0 0% = i p1; 15"+ 35 (Wi O} + O u)r;° +560; 075,

—_— 2 1202 u?
cos? Ol-jvfj = 745/12/1? 0.0.r;1 — ol ) {9l(ai/1f+/,l?aj) +

+80(a; 8,55 + 17400 )15
cos? O,jvfj=%y?/¢}r;m+..., (B. 23)

With Egs. (B. 22) and (B. 23), we obtain from (B. 18)

if 2 2 2 —6 6 2 2 —8
ng]) = a5 (a/i(sa’t-/.tj +1“i (li 6a,j) ri,- — 3—5((1/"6‘1,,- @J + @i a,]éa,]) r’:i s

if 4,2,2.—6 4 2 ()2 2,2y ,.—8 2 02 —10
Qg’)—%,ui[uj r,-j +é—5(,u, @]+@,/A])T'] -+ %%@, @] r,j )

Oy = ‘;—iu?ﬂf 6,0;r; " — ;3%5#?#?{7(0;M? + pfa) +
+ 11(0’1'611,1'1“? + Autz a’jaa,j)} ’.1_;12 ’
O = 1 ks (8. 2

On substituting these expressions into (B. 17) and (B. 2), we obtain the second virial coeffi-
cient BY) defined by Eq. (4.9).
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