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Summary. In this paper Rayleigh’s classic theory is extended for the
case of scattering of light by nonlinear deformable spherical gas molecules.
The nonlinear molecule deformation is caused by a strong static electric
or magnetic field, or by the electric field of a strong light beam. A general
formula for ‘the scattered light is given, and the depolarization ratio and
Rayleigh coefficient are obtained therefrom. The formulas are used fop
some special cases and can be applied in order to describe the hyperpolari-
zability of spherical gas molecules.

1. INTRODUCTION

The theory of light scattering by gases consisting of spherical mo-
lecules small compared to the wave length is due to Lord R a y~
leigh [1]. In the present paper Rayleigh’s theory will be extended to
the case when the scattering spherical molecules are deformed by
a strong electric or magnetic field.

In absence of an external electric or magnetic fi'eld, the spherical
molecules polarize themselves under the influence of the weak electric
field of the incident light equally in all directions (isotropic polarization).
Their polarizability is a scalar (¢) and we have to do with Rayleigh
classic scattering. If, however, the scattering gas is placed in a strong
electric field E, then its molecules experience in addition a nonlinear
polarization which is different for the two directions: parallel and
perpendicular to the direction of the field E. Depending on whether the
external electric field E is parallel or perpendicular to the light vector,
the molecule has the following total optic polarizability:
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The coefficients vy, & and ¥.,é&; describe the electro-optic nonlinear
deformation of the spherical molecule in the direction parallel and
perpendicular to the direction of the applied electric field E, respectively.
One can call them the electro-optic deformability of the molecule,
or simply its hyperpolarizability. The hypothesis of square deformation
of the molecule was already used by Voigt [2] in order to explain
the electric birefringence of atomic gases.

On the basis of equations (1.1) and (1.2), a general formula for the
scattered light in the case under consideration is developed out of which
formulas for the depolarization ratio D and Rayleigh ratio S are obtained.
Measurements of D and S when possible, enable us to calculate in
a direct way the numerical values of the hyperpolarizability y and &
for the spherical molecules under investigation. The order of magnitude
of the above effects is close to the limits of present measuring possibi-
lities. Therefore, the problem under consideration is, as yet, only of
theoretical significance.

2. INTENSITY OF SCATTERED LIGHT

Let us consider a gaseous system consisting of N identical molecules.
In the presence of an external static electric field E the intensity of
the light scattered by the gas is [3]:
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where I denotes the intensity of the incident light and Ry is the distance
between the point of observation and the centre of the scattering system.
n=(n;, ny, ny) is the unit vector perpendicular to the direction of obser-
vation (Ro'n=0) and describing the direction of vibration transmitted
by the Nicol prism, and a=(a;, gz, @3) — a unit vector having the
direction of the electric field of the incident light wave of amplitude
A=a A. The bracket { ) denotes the average statistical value in the
presence of the electric field E:

In(E)=(
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where integrations are over all molecular configurations 7; k is Boltz-
mann’s constant, and T — the absolute temperature.

(2.2)
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The total potential energy, u (v, E), and the optical polarizability
tensor, w.s(r,E), of a molecule in an external electric field E are
given by:

1 1
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where g, is the permanent dipole moment of an isolated molecule, and
a,; and aqp — its electric and optic polarizability tensors, whereas
bogr, Cupps and  Pagy,  Vazds  Ougyse, Eagwee; are the electro-electric and
electro-optic hyperpolarizability tensors, respectively.

If the isolated molecule possesses the spherical symmetry, all odd
order tensor elements vanish:

) ,ua:baﬁy:ﬂaﬂ:;lr‘éuﬁ:yde=0, ‘ (25)

whereas those of even order reduce to isotropic tensors given by the
following relationships:
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with Sup== jl for a=§,
10 for a8.

Here, the scalar quantities

1 1
A= ~~0Ogg, 0= —Qag, C= — Cuq (2.7)
3 3 5

are the mean optic and electric polarizability of the molecule and its
mean electro-electric hyperpolarizability, respectively,
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If the electronic vibration frequencies of the molecule parallel and
perpendicular to the electric field E are set equal, then we have for the
mean hyperpolarizabilities:

1
y=pn=3y,= 5 Vaaf »

1
g=¢g,=be| = 7 EaaBpyy (2.8)

By (2.5) and (2.6), the expansions (2.3) and (2.4) may be rewritten
in the form:

u {7, E)=u(r, 0)-~laE2-- -lcE4~ ey (2.9)
2 24
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wherein e —1(e;, e;, €3) is a unit vector in the direction of the static
electric field E=e E.

For the total optical polarizability of the molecule in the presence
of an external electric field, we can get from eq. (2.10) the following
formula:

fasmas=a (- a) + %{y La)+ =y )(n-e)(a-e)] B2+

* 5"14: fer m-a)+(ey—e)m-e)(a-e) E4+. .. (2.11)

If, in particular, the unit vectors n, a and e are parallel, i. e. n-a=
=n-e=a-e=1, eq. (2.11) reduces to (1.1); when the vectors n=a are
perpendicular to e (n:a=1, n-e=a-e=0), eq. (2.11) yields (1.2).

Substituting (2.9) and (2.11) in (2.1), the fundamental equation for
I.(E) may be written as follows:

+Gu—y1)(n-a)(n-e)(a-e) E24- i [y% (n-a)? +
+2y =y )m-a)n-e)(a-e)+(,—y  2(n-eR(a-e?] E* +

+ é ale; n-a)+(¢,—e)n-a)(n-e)(a-e)] E++ ] 2.12)
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Eq. (2.12) determines the general form of the classical theory of
light scattering by spherical molecules nonlinear deformable in a strong
static electric field E.

3. DEPOLARIZATION RATIO OF SCATTERED LIGHT

The depolarization ratio of the light scattered is defined as follows:

p="n, (3.1
I,
where I, is the intensity of the scattered component vibrating in the:
plane of observation (X; X; — plane, see fig.1), and I is the perpendi-
cular component ("Rayleigh component”).
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Fig. 1. A primary parallel light beam is travelling in the X, — direction with
unit electric vector a vibrating in the X,X; — plane at an angle ¢, to the X, —
direction. The light scattered is observed in the X,X, — plane (plane of obser-

vation) at-the angle @ with respect to the direction of incidence. e denotes a umt
vector describing the direction of the applied electric field E

According to eq. (2.12), D must be an even function of E:

D(E)=Dy+ D,E?*+-D,E*+ ... | (3.2)
where
Do= (J n ) (3.3)
JilE=0
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is the depolarization ratio when the light is scattered in absence of an
external field (E=0), and

p,= 1) - L g

2 \dE? 2 (7 \dE2 dE? gy’
4 4 4 27,
D= [d D} { (d Ju d J | ) 12»D727 dxJ l , (3.4)
24| dE4 gy 2417\ dE* dE‘ J. dE? .,

are contributions determining the influence of a strong electric field on
the depolarization ratio. ‘

The unit vectors, a, n and e are given by the equations (see fig. 1.):
a=ai;+asiz , n=n,i;+nsi;z ,
e=eji;+e,i, +esi; , (3.5)
where 1,1, 13 and 1ij,i5i3 are unit vectors in the X;, Xy, X3 and Xl,
X;, X;. directions, respectively, and:
a;=sing, , a3=-Ccosqq , ny=sing, , ng=cose, ,
e,=sind, cosp. , ea=sind, sinp, , es=cosd, , (3.6)
By (3.5), we have:
a-n=—an; cos?+azn; ,
a-e=ae,+aze;s ,

e-n=—(e, cos #-—ez sind) n,+egn; , 3.7

where ¢ is the scattering angle.

Substituting the expressions (3.7) in eq. (2.12) and assuming n,=1,
n3=0 for the I, component, and ny;=0, ny=1 for the I, component, we
obtain for the expansion coefficients Dy, Dy and D, defined by (3.3) and
(3.4):

2

DO:‘}; cos?d , (3.8)
a3

Dzz(l {y L(al cos? $— Dyad) + (yn— yr.})[(afe1+a1'a3e3) (ey cos ¥ —e, sin 9) cos ¢ —

— Do (a,a5e; -+ a3es) es] 1, (3.9)

l

[ 358 + ae ) (a? cos? 9 — Doal) +
1202 a2 |

D4:

+[6y1 (pu—y1) +aley—e)) 1l (afel +a;azes) (e, cos ¥ —
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— e, 5in 9) cos & — Dy (ayase; - azes) es] +

+3 (yn—y 1)*(a1e1+azes?[ (e, cos & — ey sin )2 — Dyel] —
—12aD, [y I,ag +(n—y.1)(@ase; -+ agea) es] } . (3.10)

We shall now proceed to apply the foregoing formulas to some spe-
cial cases:

(i) If the incident light is plane polarized with its electric vector
parallel to the X; — direction, i. e., ;=0 and a3=1, we have:

Dro = 0, ng = 0,

Di= l(y" ”L)(elcosﬁ e; sin 9)? €2, (3.11)
a

4

When observation of the scattered light is carried out at the angle
#=90°, the expression (3.11) reduces to:
1

D= 4(V" y—L) cos? ¥, sin?J, sin? g, . (3.12)
a

(ii) For unpolarized incident light, tz_f=¢;§= ,  a;a;=0, and eqs.

(3.8), (3.9) and (3.10) yield:

[CRTSY

Do= cos?*9,

Dg=— (VWH:ZL) [(e3— e3) cos? #+eje, cos 9 sin 9],
a '

D= 1 ‘[6(7.! )(Vn —7 ) (F'C.S_L)J [(e5— e}) cos? ® + e, e, cos & sin 9] +
121 a a a

——n 2
-+ 3(&'—— '—}'AL) [} + e2)e; cos & — ey sin ¥)2+
a

+(3e5—5e) e5 coszﬂ+4e1e._,e§ cos ﬂsinﬂ]}. (3.13)

If the electric field E is perpendicular to the plane of observation
(e1=e2=0, e3=1), egs. (3.13) reduce to

Do=cos?f, Dy= — (y. ) cos?y,
a

D= ][g(?’u VL) —\‘—6()/L)(y" y') -(‘l—jlflL)}coszﬂ. (3.14)

12[ a a a
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4. RAYLEIGH'S RATIO

For a gas of volume V Rayleigh’s ratio is defined as

_I. R 4.1)
I, V

where I, is the value of I, given by eq. (2.12), averaged over all direc-
tions of the unit vectors a and n in the planes perpendicular to the
propagation direction of the incident and scattered wave, respectively.
Namely, by (3.7) we have:

(n-a)= ——(1 +cos2d),

(n-a)(n-ea-e) = :‘l): [e2+(eycos?—eysind)e, cos I],

(n-e)*(a-e?= é(e§+ el [e2+ (e, cos © —e, sin 9)]. 4.2)

By definition (4.1), with egs. (2.12) and (4.2), the following result
for Rayleigh’s ratio in the presence of an external electric field is
obtained:

S(E)=So-+S,E*+S,E+. .., 4.3)
where
2.—1)2
so-%(z—) a0 (1 +cos? ) = ("4 Y (1 + cos? ) (4.4)
/ 9

is the well-known Rayleigh formula for the light scattered by a gas
in the absence of an external electric field; n is the refractive index of
the gas and ¢ =N/V — the number density of molecules. The coeffi-
cients Sy and S; have the form:

_ S (¥
1 + cos? 191

e o P
12(14+cos2) \{ \ o « aly a

+ (E'Lff ) l [e; cos #—e, sind ) e, cos & +e2] +
a

2=

( )(H—cos2 )+ (Z"_il’_!) [(eycos? —e, sin e, cos z?—}—e%]} ,
a

+3 (1"-1

o

Y
/) [te1 cos & —e, sin 0)2 €2 (ei—i»eg)1 . (4.5)

l
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If the scattered light is observed perpendicularly to the direction of
incidence (# =90°), eqgs. (4.4) and (4.5) yield:

S=" 2 (4.6)

a

s 1wl ( LL)ZF (fl.) " [6 (V L)( Yn— Zl) n ("f‘in;et)]eg "
12 ] \ & a a/\ a \ a

n— 1 \2 .

+3(}—" Z—‘) (ef+e§)(e§+e§)}. (4.7)
o

For the light intensity scattered at the angle #, when the electric

vector E is parallel o the X; — direction (e;=e,=0, e3=1), (4.5) becomes

S| (V') n (w) cos?dl,
1+ cos"’ﬂl a . a ]

A\ 2 2 !
S0 {3 ( “) + 3(V I-) cos? 19+(f") + (8 ) cosdl. @)
12(1 4 cos?9) a o L a a |

5. ELECTRIC BIREFRINGENCE

By definition of the Kerr constant of a gas,

g=Tu—ne 1 2am?+2p (fru—am), 5.1)
n  E? 9In? E?
and egs. (1.1) and (1.2), we obtain the expansion:
K=K¢+K;E?+ . ., (5.2)
Here [4]

2 2 — 2 2
K= 2P L {71'1__” t }z (n?+2
E->0

)
— —1) (5.3
9n2 E? g2 VT
is the usual Kerr constant determining Voigt's deformational effect,:
whereas
1 {d*K T (n24-2)2 ’

K,= UKL e (5.4)

2|dE2fz—g  108m2
characterizes the influence of the strong electric field on the Kerr
constant. ‘ .

From these formulas it is seen that the Kerr constant K of a gas,
the Rayleigh ratio S, and the depolarization ratio D, for light scattering
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in the presence of an external electric field, are expressed in terms of
the same molecular quantities y and ¢.

6. LIGHT SCATTERING IN THE PRESENCE OF A STRONG MAGNETIC FIELD

All theoretical considerations presented in the foregoing sections
can be transferred automatically to the case of light scattering in the
presence of a strong magnetic field H. Optic pclarizability of the mole-
cules is then described by an equation similar to equation (2.11):

Tag, (7,H) nag=am-a)+ - [171 m-a)+@,—n )m-h) (a'h)]H2+

+§%[@[ n-a)+@,—¢ x)(n-h)(a-h)] Hi+ ... (6.1)

Here #y, @, and 5, @, are the magneto-optic hyperpolarizabilities deter-
mining the changes of optic polarizability of the molecule, caused by
a magnetic field in the direction parallel and perpendicular to this field,
respectively; h denotes a unit vector describing the direction of the
applied magnetic field H.

One can see that in order to get formulas for I, D or S, in the pre-
sence of a magnetic field, it is sufficient to start from eq. (2.12), replacing
the hyperpolarlzabﬂltles YY1, & @nd &, by n,%, @, and @, and the
field E by —

7. INFLUENCE OF A STRONG LIGHT BEAM ON RAYLEIGH’S RATIO

If the intensity of the incident light is high enough, the oscillating
electric field can be considered as a nonlinear deformation factor of
a spherical molecule. In this case the Rayleigh ratio is defined by the
following expansion o

S =8, + 8,42 + §,A* -+ .., (7.1

where A is the amplitude of the light electric vector. Sy is described by
(4.4), and the coefficients S, and S, are given by:

'3
2—;4( a) So,

Se= 558{3(%)2+ (i—)} So, (7.2)

where y and ¢ are the optic hyperpolarizabilities of the molecule.
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One can also consider the case of two mutually independent light
beams, one of which has small intensity, and the other — high intensity;
the electric field of the second beam causes a nonlinear deformation of
the molecules of the scattering gas. Let us suppose, as before, that the
first light beam is unpolarized propagating in the X, — direction, whe-
reas the second beam, propagating in the X, direction is plane pola-
rized with its electric vector parallel to the X; — axis. In this case one
can obtain again equation (7.1); except that the coefficients S, and S,
are expressed in the following way:

2= o _ {(Z—[)-L(&') cos? o ,
2(1+ cos?H |\ a ‘L a I

So 7;1,)2 (Vu‘ 2 (5,!_ (En)
Sg== - R J3(L) g 29 +(—= — 2% . 7.3
4 32(1+coszz9){ (a ‘a)cos + . + a cos (7.3)

If both light beams are unpolarized and propagate in the X, —
direction, then the coefficients S, and S, in the expansion (7.1) are
given by:

S2—_1 y”_*_y_L)SOy
4 a
1 iy &ute
Se= L { 3(A",_h.i4)+(_uﬁ¢ ls,. (7.4)
64 a? a /|

8. DISCUSSION

Let us.draw attention to an interesting fact arising from formulas
(4.7). Namely, if the electric field E is applied along the X; — axis, then
we can get

S5 = (34“-) sy,
a

Sso:_l_lg(&z)z (ﬁu.)l 0 1
) ) o

When the electric field E is applied perpendicularly to the X; — direction
formulas (4.7) yield

a
(-’ﬂ){#(ﬂ:)}sﬁ" . 8.2)
a a



80 ' St. Kielich

We can see that measurements of the ratics Sy/Sy and S¢Sy for the cases
when the direction of E is parallel or perpendicular to the X; — axis
gives directly the values of the deformation of a spherical molecule in
these directions, i. €., numerical values of y,, &, and ¥, and &; , respecti-
vely. This circumstance has a very important meaning, because we
cannot get this on the basis of measurements of the electric birefringence
alone, which, as follows from formulas (5.3) and (5.4), allow only to
describe the difference of these hyperpolarizabilities, i. e., yy—y1 and
e

Substituting the coefficients (3.14) in the expansion (3.2), and as-
suming, for simplicity, that the condition (2.8) is satisfied, we obtain

D(E)= {1 - —?;—(Z-)Ewr [—‘3(1)2'—]35(~8—)|E4+ . .}cosw. (8.3)

a 9\«
For the CCly molecule we have the following data: ¢=10.5-10~* cm?

and y =6.5-10%% e. s. u. (see [5]), then formula (8.3), to the accuracy of
E?, yields: ' '

\ &

D(E)=1{1—0.4-10-12E?} cos?d.

Thus, for an electric field of high intensity, E=2-10%e.s. u. and we
can expect, in the best case, a change of D(E) to be of the order of 107,
which is very close to the theoretical limits of experimental possi-
bilities. .
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