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Summary. The effect of an electric field gradient on the dielectric
permittivity of fluids is discussed. Numerical computations are carried out.
These show the effect to be generally so small as to involve considerable
experimental difficulties. On the other hand, if measurements were rendered
possible, the value and sign of the quadrupole moment of the molecule could
be determined immediately from the relatively simple formula derived for
the effect under consideration.

1. INTRODUCTION

The present paper deals with the theory of the effect of a steep
electric field gradient on the dielectric permittivity of fluids.

The solution of the problem with respect to the refractive index is
due to Buckingham [1]. For the case of a field gradient produced
by the four-wire condenser shown schematically in Fig. 1, Bucking-
ham’s theory yields a formula of the type

nx”‘ny=(A+g)Exx (1.n

for the difference n.—mny between the refractive indexes of a fluid for
light beams travelling along the z-axis and with electric vectors in the
x and y directions; herein, Ezy=—Ey, is the electric field gradient,
and T — the absolute temperature. The quantities A and B characterize
properties of the medium; in the case of a gas, 4 is dependent on the
molecular quadrupole moment induced in a molecule by the uniform
field E, and B — on the permanent quadrupole moment and anisotropy
of polarizability of the molecule. The effect described by eq. (1.1) pro-
vides a direct method of determining the numerical value and’ sign of
the quadrupole moment.
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With regard to the analogous effect consisting in a variation of the
dielectric constant, the formula

sx-eyz{A+§+;(c+’;)} Euz, | (1.2)

is derived in the present paper. In addition to the quantities A and B
of eq. (1.1), it contains the two quantities C and D, C depends on the
induced quadrupole and permanent dipole moments, and D is linear in
the permanent quadrupole and quadratic in the permanent dipole mo-
ment of the molecule. In the case of a liquid, the quantities B,C and
D depend, moreover, on the angular intermolecular correlations and on
the fields existing between the molecules.

X
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g

Fig. 1. Four-wire condenser yielding an electric field gradient
Eix=—E,, at its centre O. Conducting wires run © ,j‘ @) parallel
to the z — axis (which is the axis of the condenser, plerpendicular
to the xy — plane); e is the unit veector in the direction of the electric
measuring field E. If a fluid is introduced into this four-wire con-
denser, the quadrupole molecules G_i) will be orientated, and elec-

tric anisotropy is induced in the medium. In the case of Buckingham’s
effect, E is the electric vector at 45° to the x —axis of the linearly
polarized light beam fravelling in the z — direction

Notwithstanding the fact that, in many substances the absolute value
of the |exz—&y| effect may well exceed the one represented by |nxz—mnyl,
its measurement will surely involve considerable technical difficulties
(e. g, how should one proceed in measuring with a weak uniform elec-
tric field so as to avoid perturbing the steep gradient of the field giving
rise to the effect under consideration?). Apparently, the ex—ey; effect
should be more easily accessible to measurement by microwave methods
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employing a wave whose length is below the range of Debye dispersion
of the substance investigated. However, the present paper is not intended
to analyze the difficulties of measuring the “hypothetic” effect, but
primarily to give an account of its theory and relationship with the
readily measurable Kerr effect.

2. THE GENERAL THEORY

Let us consider a homogeneous isotropic medium as represented by
a large spherical specimen of macroscopic size. At the centre of this
large sphere we shall be considering a small macroscopic sphere of
volume V. We suppose that this specimen is in a weak uniform electric
field E and in a strong field gradient Ex:. In this case, the dielectric
constant of a dense medium is given by the general equation

e Mo

es-F2 3V R 2.1

" where M=M (t,E, Ezy) is the dipole electric moment of the small sphere
when its molecules are in the configuration v and when the external
field is E and the field gradient Exx; e denotes the unit vector in the
direction of the measuring electric field E.

The brackets < >E’Ex:c in eqg. (2.1) stand for the statistical average
in the presence of the external fields E and Ex:.In the classical {reat-
ment, the configurational variables 7 are continuous, and statistical me-
chanics leads to the formula

UG, E, Eu

M(r,E,Em)'eexpL— dr -
f | kT |
M- =t — : 2.2
< e>E s Ea;x ? [ U(T ) E y sz)' ’ ( )
Jexp - e dr
| kT |

here, U(r,E,Exy) is the total potential energy of the large sphere in
the configuration 7 and with the external fields E and Ei, k- Boltz-
mann’s constant, and T - the Kelvin temperature of the system.

{M-e) g g,, will now be expanded in a power series in E and E_:

9
M)y, = )| M0 ] B

22
W oM. }EE @3
{EEBEN E, Exx . xx
Since, at E=Ey, =0,
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<M e> - /d“’*ea\-—o < (.Taxi yayg)> 0

we obtain
aMa oU
(M-e :/(_‘_, 1y, )e,,e E+
e " UGE, TR R, D
2M,, 1 [eM. 2U M 2
(e (M B0 U My U
2Es0E,s kT \0E; ¢E.s 2Ea 8E;s SE3oEys
1 . 8U U
4+ — M, — —\ e.ep {x.xs—Yyys) DEExz +. .., (2.4)
K2T2 0E; 0Bl =Yy B

where the brackets ( > without lower index denote the statistical
mean value in the absence of external fields (E=Ezz=0)

[o1c,vexpl - L0
T e | (2.5)
[ U@,0,0)
‘ exp ) — " = dr
L U™
The general relationships:
| | pr. 0 ]
M;r A Oup== -3 —\U 7,E Ezz) 2.6
8E, | (v =] 8 aEag{ ( i 2.6)

define the total dipole and quadrupole moments of the large sphere.

With the definitions (2.6), and with the isotropic mean values of the
functions of the unit vector components e, x. and Ya:

1
.85 == XuXs = Yals = 3 Baz,

1
e.e3 (X, 2xs — Y. Yo) = 30 (2 €082 Doz — 1) { — 2 8apbys + 3 (0ayds + dasdp)} , (2.7

the expansion. (2.4) leads to the result

‘ 1 BM,, 1 T 1 / a Mu
M-e)g, g, = + - MM:>E+—(2c0s? Qe — 1) 3———+
BBy <;; E. kT by 15 ° N QB2 Eop
1 [eM, aMj T oM,
+- @a + 3 Ma + 3Ma " + MGM a EE .y (2<8)
kT( ’ 9E.; ¢E, ) s MM O > Bl +

where 2., is the angle subtended by the unit vector e and the direction
1fora=f

of the x-axis (see Fig. 1), and dap = {0 for a=Fg.
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Substituting (2.8) in eq. (2.1), the equation for & may be written
in the following general form:

e , oM, | 1 (oM,
el T ot 13 My ( 05+

es+2 e+2 45V 0Es0E.s kT \ 2E;
Ly M gy BM") v MMTETS B, 2.9)
K3 oE.s k?T?
wherein [2]
e=l 4z M.ME (2.10)

t+2 9V BE kT

is the equation for the dielectric constant in the absence of the field

gradient (Ezx=0).
The electric field gradient E° inside the sphere is related to the field
gradient Eyzin vacuo by the formula [1]:

Exx: Exx, : (2.11)

and, from eq. (2,9) we havel

2 2
oo, BT 1y o ML+_1(QM$QZ?+
675V 0Es0E.; kT \3E;
Lo M gyt BM“) + L MMEOT > B (2.12)
2Eap 0B | kT2

wherein ¢z and & are the values of ¢ for 2.,=0" and Q..=90°

i.e. when the unit vector e is parallel and perpendicular to the direction
of the x-axis, respectively.

3. APPLICATIONS OF THE THEORY TO SOME SPECIAL CASES

If the sphere contains N similar molecules, we may expand M.
and Oy as the sums of the moments of the individual molecules:
N N
Mi=M,= Y mI®, %= 2 O5» 3.1)
p=1 p=1

1 From eq. (29) we can also obtain the quantity Aes—s —e&, determining
the effect of electric saturation produced in the medium by a strong electric
field gradient. Between de, and the gradient-induced anisotropy e,—¢,, given
by eq. (2.12), exists the followmg relation:

As‘=3 (2cos? @ _—1) (e,—¢,).
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where mi® and @T(p) are the total dipole and quadrupole moments
of the p-th' molecule within the sphere. Using the expansions as given
by Buckingham [1] for the isolated molecule, we have analogously
for the p-th molecule immersed in the medium (the hyperpolarizability

tensors are neglected):

mg‘(p) (p)+a(p) (Etrf-F(p) + A(p) (Egj-{—F(p))*f—
4 =B®. s (EBy+ FP)Epo+FE) 4. .., (3.2
1
O%P = OF + AR (B, +FP)+ 2 B®.o (Ey+FP)Es+ F) 4+ ..., (3.3)

wherein P ) and @( are the electric permanent dipole and quadrupole
moments of the p-th isolated molecule and aaf —its electric polariza-

bility tensor. The tensors Af,pg) and Bas .74 describe the quadrupole
moments induced in the p-th molecule by a uniform electric field.
F® and F% are the a — component of the intermolecular field and
af — component of the field gradient at the centre of molecule p due
to the charge distribution of its neighbours.

With respect to (3.1), we may write eq. (2.12) in the form involving
molecular parameters:

ey DY 2 omi”
Y 675V oEs 3Ea/3

N N (@
+i Ew Z(ama 6T 4 om TP ams )+
kT 3Eg} OEup
g p=1 g=1
N N N
2 Z 2 T(p) T(Q)@T(T)>sz (3.4)

sz

Neglectmg in the foregoing equation the small terms oF P [oEs, oY, /aEaﬂ,
..we obtain a form better adapted to further discussion, namely:

ooy 87 (e+22(26+3) {Bag s Qag @y6<2 09 w(pq)>+

675

+~m., As. 5< Zw( ‘*’a‘g,,>+wm.,mﬂ@w< 2 Zw“"” ‘P’>>1Em, (3.5)

q=1r=1
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where wﬁl?,‘” denotes the cosine of the angle subtended by the a and y
axes of the molecular systems of reference rigidly attached to the p-th
and g-th molecules, and p=N/V.

(i) Perfect Gas. For a perfect gas, eq. (3.5) assumes the form:

8% 1 2 1
Ex—&y= i——5- 0 {Bﬂﬁ':”.\? -+ ;T‘aaﬁ@ag"f- kT‘lt(‘Ap’:nﬂ + kZTz‘lLa/,tﬂ@“{g }me . (36)
If the molecules are non-dipolar, p,=Aws, =0, and eq. (3.6) reduces to
Rx l 1
Ex—Ey=—- Ba,‘?:alx +" Aap @a }E (3.7)
BT g T T g e e B

which is analogous with the one derived by Buckingham [1]
for ny—mny (see,eq. 1.1).
For axially symmetric polar molecules, eq. (3.6) yields

ax—eyzf’;Q{Ba@;aﬂ+$<a..-a.L>@+k‘;uA+k2;2u20}Em, (3.8)
where A and @ are the induced and permanent quadrupole moments
of the molecule possessing axial symmetry, and a,, a, — its electric
polarizabilities parallel and perpendicular to the axis of symmetry.

(i) Liquids. For polar liquids whose molecules have the axial syms-
metry we obtain from eq. (3.5);

87 (e+2)2(2e+3) 0 2
gx—&y=————————=3Bus. s+ ——mARp—-
T 675 { BT qep
+- @—a ) ORem+ —1 m2OR B2 (3.9)
KT I L CM kZsz K, Lxx .

The quantities Rp, Reyy and Rg appearing herein are termed the
angular intermolecular correlation factors for molecules possessing the
axial symmetry, and are of the form

N

Rp=< Yecos HPN (3.10)
p= Jeos 077

RCM=£< jf R S ) (3.11)

2\

_1 85X (»Q) (or) _ (gn)
Rxe=1 (3 X (3cos 07% cos 07" ~cos ), (3.12)
2 NgZiro ) ‘

where 6%®? denotes the angle between the axes of symmetry of the
p-th and g-th molecules. The factors Rp, Rey and Rk of the same form
also appear in the theory of molecular orientational effects given
by Piekara and Kielich [3, 4].

For strongly polar molecules, the first two terms in eq. (3.9), accoun-
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ting for the induced quadrupole moments A and B, can be omitted,
yielding the following relations

36m2(2¢+3 ©
bpry = SOME2eHY) O pps (3.13)
where [4] ' S ()
27 (n?+2)2 (s 4-2)% 0 f m
K=" S ay—a) ay—a ) Rem+ - R 3.14
191502 kT 1l Y,l n i CcM kT K} )

is the Kerr constant. Here, ¢, and «, are the optical polarizabilities
of the molecule parallel and perpendicular to its axis of symmetry.

4. DISCUSSION

If, for a given substance, the gradient-induced anisotropy ex—ey
were known experimentally, and considering that Kerr’s constant is
easily measurable, eq. (3.13) would immediately yield the gquadrupole
moment of its molecule.

For carbon disulphide, we have the following experimental data at
t=20°C: n=1.63, ¢e=2.63,0,—a =9.6-10"2cm? and K=12,1-102¢es.u.;
by eq. (3.13), this yields ot

Pp—ey=9.2-10120E ;.
For a field gradient of Eir=— 1300 es.u. as calculated by Bucking-
ham [1] for V=20kV in the special condenser (fig. 1), and with
a quadrupole moment of O =5 10726 es.u.,, we have for CS,:
[ Ep— ey |=6+10710,

Within existing techniques, an effect of this order of magnitude
should hardly be accessible to detection, The chances for this should
be better in liquids presenting a very high Kerr constant. Thus, for
nitrobenzene: n=1.55, ¢ = 33.4, ay—a|  =7.3-107 cm? and K=13-10"1
e.s.u.; hence, eq. (3.13) yields

ex—ey=1.1-108CEz,
and, with Eyr=— 1300es.u. and@=15 10" es.u., a value of
fx—ey|=22-1075
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