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The present paper deals with the theory of the second virial coefficient B(T) = 2 X', »; B@)
of the equation of state for polar gas mixtures. General formulas for the virial coefficients B
are derived, containing, in addition to the contribution arising from the presence of intermolecular
central forces, others due to the various tensorial forces acting between polar molecules: dipole-
dipole, dipole-quadrupole, dipole-octupole and quadrupole-quadrupole interaction; moreover,
dipole-induced dipole and quadrupole-induced dipole inductive interaction. The formulas are
given in two forms: the general form as derived by means of tensor formalism and relating to
polar molecules of arbitrary symmetry and arbitrary central forces potential, and one obtained
by specialization for molecules presenting the axial symmetry and a Lennard-Jones (6—12)
potential. In particular, the latter formulas are applied to one-, two- and three-component gas
mixtures.

1. Introduction

Kamerlingh Onnes proposed an equation of state for imperfect gases, of the form of
the virial expansion

¥ pV _. BT «T) 6 D(T)
=1t gt gt (1.1)

wherein p, ¥, Rand T are the pressure, molar volume, gas constant and Kelvin tempera-
ture, respectively. B(T), C(T), D(T), etc. are the second, third, fourth, ... virial coefficient,
If the values of the virial coefficients B, C and D accounting for the experimental divergences
of imperfect gases from the equation of state of a perfect gas are known, statistical mechanics
will provide valuable information on the intermolecular forces.

The classical theory and quantitative discussions of the second virial coefficient B(T) for
intermolecular forces of various types are given in papers by Lennard-Jones (1924), Stock-
mayer (1941), Rowlinson (1949), Pople (1954), Buckingham and Pople (1955), Stogryn
and Hirschfelder (1959), and others (see, Hirschfelder et al. 1954).

The third and fourth virial coefficients, C(T") and D(T'), are discussed by Rushbrooke
and Scoins (1951), Kihara (1953), and the fourth — by Katsura (1959).
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The present paper brings the theory and a discussion of the second virial coefficient
for a mixture of polar gases. In computing B(T), account is taken of the intermolecular
central forces and of various types of directional forces, the latter being considered to re-
present a perturbation in the central forces. In order that the formulas be correct for mole-
cules of arbitrary symmetry, all contributions to B(T) from the directional intermolecular
forces are computed by means of the tensor formalism. The general formulas thus derived
for B(T), which hold for arbitrary central forces, are discussed for the cases of dipole and
quadrupole molecules having the axial symmetry, on the simplifying assumption of central
forces given by a Lennard-Jones (6—12) potential. The latter formulas are applied to certain
special cases, namely, a one-component gas, a two-component gas mixture and, finally,

a three-component gas.

2. The general expression for the second virial coefficient of a mixture of gases

In the case of a gas mixture, the second virial coefficient B(7') in the equation of state (1.1)
is given as follows:

B(T) = Zxij(ij), @.1)

fg-

wherein » is the number of components of the mixture, and «x; is the mole fraction of the

4
i-th component in the gas mixture, ¥, x; = 1.
=1
Classical statistical mechanics yields B(T) in the form of

- u‘j
B(T) = fff{ — } dri¥®dowPdw® 2.2)

with V denoting Avogadro’s number, £ — Boltzmann’s constant, T — the Kelvin tempera-
5112) — the total potential energy of interaction between the molecules “1”° and 2"
of species D s 0 @ _
variables describing their orlentatlon, 2 = fdw,- = fdwj.

The total potential energy can be expressed in the form

ug].lz) = u(‘”(r,-,-) + V1_<j12>(,ij, w;, @) (2.3) ,

ture, u
Q( ES)

and species *j”, {® — the vector connecting their centres, and o

u® (r;) being the potential energy due to the central forces (angle-independent potentials),
and V(12) — the energy due to the tensorial forces (angle-dependent potentials). Considering
V(lz)to represent a perturbation in the energy u(r, ;)» the second virial coefficient of eq. (2.2)
can be put in the form of an expansion:

B — B 4. > B®, (2.4)
n=1
wherein the zero term
B o0 u(O)(r.,)
By = — 27sz {e" T — 1} rydry; (2.5)

0
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is the second virial coefficient for a central force field #® (ry), and the subsequent terms

given by

., (")(r,
BY = — an ( kT) jf Vg, 0, 0)yre” *T drifPdoVdw®  (2.6)

are contributions thereto resulting from the tensorial (directional) forces.
For the sake of simplicity, u® (r r;) will be assumed throughout the present investiga-
tion to be given by the following Lennard-Jones potential (1924) (see, Hirschfelder et al. 1954):

() )]
uO(ry) = dey r’ — _r_f (2.7)

wherein the parameters o;;and &, possessing the dimensions of a length and energy, respec-
tively, are constants characteustlc of the chemical species of the interaciing molecules. The
force constants between unlike molecules relate to those between like molecules by the

empirical combining rules
o;=4%(0;+0);  &=1(g 3;')1/2- (2.8)

Applying the Lennard-Jones method (1924), and by eq. (2.7), B, is obtained in the form
(see, Buckingham and Pople, 1955)

B = 2 3 aNo% F(v;), (2.9)

wherein

F(Yu)—yl{ (i) — He(yij)}§ yh= :;, (2.10)

is a function tabulated in the monograph by Hirschfelder et al. (1954), whereas

Hilys) = 12}/%0;}—3 f r;;ne“y;j{((:—:;)“— ((:_Z') }r,,dru 27 n 2"3: ( 6m+ n-—3 ) J’u
3 ooy

m!
(2.11)

are functions introduced by Pople (1954) and tabulated by Buckingham and Pople (1955)
for all n and for values of y from 0.6 to 3.2.

In the subsequent sections, the terms B as given in general by eq. (2.6) w1ll be comput-
ed for various directional forces acting between two dipole or two quadrupole molecules.

3. Dipole anisotropically polarizable molecules

The potential energy of the electrostatic interaction between two unlike, dipolar, anisotro-
pically polarizable molecules is given by the expression (cf., Barker, 1953)

Vi§12) - Iu;l,i) ”/(32,1') Tég) 1 (y(l") (2,J)ﬂ(1 0 lu(2,1) ,4) (2,1)) T(u) T(u) -+

1, 2, 1, 2,
+ u&D G oG uBHD TR TH TS — . 3.1)
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wherein u® is the a-component of the permanent electric dipole moment of a molecule
of species “i”’, and a;’?z is its electric polarizability tensor. The first term in the foregoing
expression accounts for dipole-dipole interaction (Keesom), whereas the subsequent ones
are those of dipole-induced dipole interaction (Debye, Falkenhagen). The tensor Ta("g)account-
ing for dipole-dipole interaction is defined as follows:

o 1
Taf =— 5 {Brijariis — ri0as} » (3.2)

where d,; is the substitution tensor, unity if o =f and zero when o4 .
By the method explained in the Appendix, substitution of (3.1) in eq. (2.6) yields the
consecutive terms of the expansion (2.4)1) in the form:

i N B
B =— 577 @ty + ubaa) (rs %,

2. ..2
) oHHN , —e
B =—_lu(6k2f;“2 7y,

i N RO
B{P = — 75183 {15(auutyy + o) iy + 28aGuuy —

— Aol 1) i+ 2Badgud ) — aGulPud) piy} <>
4 4
i paop®HN |, ~12
B == Fomrs <
) 29 uyutyN
By =~ @5’0—1951715 {2l + poa) ulopds +
+ 4 Bauduy — aQudud) uy + 4 BaQud i’ — aQul uf) upd >,

6
B _ 29 pety N 7y,

T 22050 k876 NV (3-3)

.
where a;) = 1o is the mean polarizability of a molecule of species “'i”’, and the brackets { >
denote the mean value dependent solely on the model of central forces, i.e.

u(® (rij)

("> = 4~nfr,?]7”c— kT r?j(lr,-j. (3.4)
0

The expressions (3.3) are correct for a central forces potential u® (ry) of arbitrary form.
Assuming, for simplicity, Lennard-Jones (6—12) potentials, we have, by (2.11),

3~n
—n TToy;
(rij ) = —3‘;747 H, (yi), (3.5)

i

1) In computing the expressions (3.3), of all the terms due to the energy of inductive interaction between
the molecules only the ones linear in the polarizability « have been retained.
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whence the second virial coefficient given by the expansion (2.4) can be written in the form
B = BP + gip_aip B+ ip—ina aip B (3.6)
wherein B is given by eq. (2.9).
The contribution to the second virial coefficient BY from dipole-dipole interaction is
of the form

i muuiHN YN )
dip—dip B = — THOROZ 1py .y 4 SHOKDIG py

288 oel; 400 %% 12 (i) +
29 pomlpys }
* 540800 olPch Hs (ya) + oo 3.7)

The last contribution to B® in (3.3) results from inductive interaction between the
molecules; if these have the axial symmetry, it assumes the form

3 { (oeyuliy + plyoeciy) He (y5) +

.. TT
o e BO) = T
dip—ind dlpB = 3
24 afeiiy3;

5 5 4
DUT) Y5 4 4
+ M—ilc)i(;*j-a?jtj [“(i) (1 += 5(:‘)) HEy + 1t (1 +z 5(;')) “(f)] Hyy (yi) +

29 pouliy vy 8 8
+ m’% G |\ 1+ = 0w uin+ udy \ 1+ = Oy | %6y Hyg(yi)+ - (3.8)

here, the quantities
1 g i —
%G =5 (o) +20D) and o5y = 2L 39

denote the mean polarizability and the anisotropy of electric polarizability of a molecule
of species *i’’, respectively, ocﬁ’ being 1ts polarizability along the axis of symmetry, and
oz(’_B — that perpendicular to the axis.

From (3.8), the anisotropy of polarizability of the molecule, ), is seen to have no
bearing on the segond virial coefficient in the first approximation; it plays a part in higher
ones only. -

If, in particular, the dipolar molecules are isotropically polarizable, 6=0, ey. 3.9

reduces to

n aN
dip-indaipBP = — 53— (@it + ) {He(yij) +

z]eil'yif
2.,,2..4 4 ..4..8
wowdorl o Pubebnd o } 3.10
+ 0 0'3-6% H12(y11) + 134«4«000'%,283 18(y1])+ e ( )

4. Anisotropically polarizable quadrupole molecules

In the case of a gas mixture consisting of anisotropic molecules which, though not
dipolar, possess a permanent electric quadrupole moment, we have (see, Kielich 1960)

12 L, 2,7, iy 1,7 (2,5 2,5 2, 1) (L D (L5 ) Ty
VED = — 3 0%P0EN T, — &5 (a5P0%705) + e 05700 0) T8 T — v (141)
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here, ©%) is the tensor of the quadrupole moment of the molecule of species “i”’, given by
( .
0 = 4 X D@~ Ao, 2

with e denoting the n-th electric charge of the molecule of species 3", and #& — its radius
vector.

The first term in eq. (4.1) accounts for the potential energy of quadrupole-quadrupole
interaction, whereas the second is that of quadrupole-induced dipole interaction. The
respective tensors Té’}?ﬁ and T;‘;,Q,a describing these interactions are determined by eqs.
(A.10) (see, Appendix). i

By eqs. (4.1) and (2.6), the consecutive terms in the second virial coefficient are obtained
as follows (cf. eqs. (A.8) in Appendix):

JV

@
By 26T

DOD + GDHD 8
{26,045 + OgdOpo} <ri®> s

i i i -1
B‘E!J) [P m @( )@( )0§{5)0(])<I‘ 0

N o S A _
+ 55 s (HOROROVOY + O5OD00PO} (i

B _ 64N L ODO0ONEYOYOD (175, .. (4.3)

245K3T3 i
With respect to the foregoing expressions, the second virial coefficient of eq. (2.4)
assumes the form
B Bgf) 4 B . B, (4.4)

quadr-quadr f- quadr-ind dip

In the case of molecules possessing the axial symmetry, and for a (6—12) Lennard-Jones
potential, the contributions from quadrupole-quadrupole and quadrupole-induced dipole
interaction are, herein, of the form

. TnO%HOFN 186,052
antequaa:BP = — Tl 5=\ Hals) ~ g e PP His(ya) + s (45)
” aN
andeind ip B = — 166%e; % {(“G)@(zf) + Oha) Hs (1) —
6 000 '
- _:%Ffijgjj_i (@@dwO) + Obacydu) His (v5) +...(» (4.6)

O, is the quadrupole moment of an axially symmetric molecule of species “i”’, which, by
the general definition of eq. (4.2), is given by

— ) i) (272 2
Op =035 = 4 2 0P BZn— 1), (47)
n
where &,; is measured along the molecular axis, and

0 = — 20{) = — 26Q. ' 4.8)
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5. Multi-polar molecules

Let us now consider the case of interacting molecules of a gas mixture presenting,
quite generally, a dipole, quadrupole and octupole moment. The potential energy of multi-
pole interaction between two unlike polar molecules is given by the following expression

(see Kielich 1960):
ng) Mle :)M(z,f)](ﬂ)jt % (1,1')@%1) @(11) (2,7))T‘(21'J{'?)}’+
+ % (3ﬂ(1 :)Q(2,1) 5@%:)@%;)_,_ 392%;)/45’2,/)) T%)yg-{" s (5.1)

wherein Q%) is the tensor of the octupole moment of the molecule of species 07, defined
as (see, Buckingham 1959)

'Qg/gy 3 Z o {5 Sg ;:/; 5:3 (r széﬂv St%é‘yz T sti'zazﬁ)}' (5.2)
The terms in eq. (5.1) determine the potential energy of dipole-dipole (r;;%), dipole-
quadrupole (r;7*), and, furthermore, dipole-octupole and quadrupole-quadrupole (r;®) inter-
action, respectively.
Analogously, by (5.1), eq. (2.6) yields the following contributions to the second virial
coefficient (see, formulas (A-9) in Appendix):

B =0,
) butyN , - ) o7
B = — e <7 = 6k2T2 (OO + OO ) <ri*> —
2N 2 A AW @) o) u O 0 S0y
— 15 e B #0171 0430.:50 2643 -+ 3 Q0 Qutn} g Y
. 2N
B — s ey OONOD U us <17 1y
35 ksTa{ @) (1)@(1)9(1)@%)@(1) 0(1)0;13@ ';);M(al)/l:g’)@%{s)} <r’-]—13
64N B 8y G -
-+ -271'—5—,;3:—['—5 @( )@5”),@( )@(J)@(l)@%\ r; 15>,

i N — 6N i ) G Uy (N ) 14
B = P;B)II:‘EJZ;W T 175K2T {09 1@ DU utsy + uo Qs uPuP} gty —.
(5.3)

On substitution of the foregoing expressions in eq. (2.4), the second virial coefficient
for polar gases is obtained in the form
. o o , y a
B W= B gj) + dip-—dipB @ + dip—quad!'B @ + quadr—quadrB @ + dip—octupB v, (54‘)

where the first, second and fourth terms are given by eqgs. (2.9), (3.7) and (4.5), respectively.
The two remaining ones, accounting for dipole-quadrupole and dipole-octupole interaction,
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are, in the case of axially symmetrical molecules, given by the following expressions:

y alN
dip— guade B = — 1090522 {(ﬂ(z)@(;ﬂr O%uty) [Hs(yz])

1] 81]

6@(1)@(1)}’11 ) ] ZILL(D@(,)@(])I“(]))/U 55
350_" - JS( 1]) 3 ... 50%8” Hl(yx}')+ g ( i )

N alN
. ) o 2. ()2, 2., ,,2. L)
dip-octupB 1440,177 8,2]' {(ﬂ(l)-Q(f) + Qouin) Hyo(yy) +

WD o o\ H e y
+ 1000k Mk T Qawcn) Hialys) + - (5.6)
q=y

wherein Q) is the octupole moment of the axially symmetrical molecule of species “i”:

‘Q(l) = 9333 Z e(')Qm 5 2'2” — 3r, m) (57)
with
Q:(sgs = 29:(3?1 = zggz)z- (5.8)

0. Applications to special cases

We shall now proceed to apply the formulas for B(T) derived in sections 2—5 to some
special cases.

(1) One-component gas. For a gas consisting of a single species, the contributions to
the second virial coefficient computed in sections 2—5 assume the form

B, = 2 nc®NF(y), (6.1)

N =\ Butyt 29u°y°
dlp——-dlpB - 2880’382 {H ( )+ 400 O .62 2 12(y) + _9—46%-60'1284 HIS(y) +"' ’ (6'2)

i B =~ SN 3) B )+ g Hoo) +
+ %“3—; [Hu(y) 4 2—2395%2{%2 Hiy(y) +] + } 6.3)
asianiB =~ 2O 1)~ RO )+, (64)
ol == W )~ DO .., 65)

au?@:N | 6 @%y
dip-quadeB = — —9%6—58;{1{8@) LY Huly) ~ ool 13<y>+...}, (6.6)

2N
dipeepB == 7y {Qﬂm () + Taidies Hual) +} ©7)



441

The expressions (6.1), (6.2), (6.4) and (6.6) are identical with the ones derived by
Buckingham and Pople (1955).

In an earlier paper (Kielich 1960), the second virial coefficient Bg of the molecular
constant of light scattering was computed for the molecular models considered in the fore-
going Sections; for molecules of constant polarizability, the isotropic contribution to Bg is
related to B(T) by the formula

; 16 mta2N |
Bs =— o B(T), (6.8
wherein 4 is the light wavelength.

(1) Binary gas mixture. By eq. (2.1), the second virial coefficient of a binary gas mixture

is of the form
B(T) — xiB(ll) +2 xlsz(IZ) + ng(22)_ (69)

In particular, the molecules of one component of the mixture being spherical and those
of the other quadrupolar, the expressions derived in Sections 2—05 assume the form

B = §nolyNF(yy), (6.10)
2 i 3 oy O%
BID = 3 mofN {F(ym) ~ Tty d, 0 (6.1
2 3 , 3 a2, 0% [ 6 62,0% )5 ]
B2 — 2 F - 2 _ —
3 7o N { (22) 16 0%, ea7 % #Hs(yzz) 35 022822 His(y99)
7@%2) 18 @?2) ¥y %2
~ 3200465 Hyo(y20) — T His(va) | (- (6.12)

Eq. (6.11) was derived previously and applied to an argon-carbon dioxide mixture
by Buckingham (1959).

(¢ii) Ternary gas mixture. In the case of a gas mixture consisting of three unlike com-
ponents, the second virial coefficient has the form

B(T) = a2BMW + 42BC® 4 x2B®®) 1 2(x,2, B + 2, B - x,73B%).  (6.13)

E.g. assume the molecules of component 1 to be spherical ()7 0, pqy= Oq,= 0), those
of component 2 to be quadrupolar (i, = 0, @y #0), and those of component 3 — dipolar
(g # 0, Ogy= 0). The expressions derived in sections 2—5 for B, B and B*®® once
more yield egs. (6.10), (6.11) and (6.12), whereas those for B, B® and B®® Jead to the

following formulas:

2 aauls }
(13) — N 6.14
B 3 no"“isN {F(J’ls) 16 0%3613}/%3 He()’m) ’ ( )

2 @y
@) = = gehNIF(v,.) — —L® __ 1 —
B | 3 033 { (728) 16 0855 12 6(es)
36% | phk }

—_ @ 6.15
32 0'53 & 23},%3 %) + 192 €03 H S(y 23) 4 ( )
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¢

2 . i) Hsy3s 4
39 = 2 gl B H, H@)ss 2
B 3 noggV {[' (¥33) 808s6my s | 6(¥aa) + 10085c2; 1+ 5 0@, | Hyp(yss) +

29uly)3s 8 , rs
" 00082, \ LT 7 0@ ) Misls) o | qop0e o | Helva) +

3u<a>y33 udyrds }
940800 o1 T .16
v 40008335 Hiplysa) + 9408000125 Hyg(vss) + .. + (6.16)

The expressions derived in sections 2—6 for the second virial coefficient can be easily
applied to more complex gas mixtures. We refrain here, however, from considering these
special cases.

APPENDIX

The method of isotropic averageing of Vi

In order to compute the terms in B® as given by eq. (2.6), it is convenient to carry
out integration over all possible configurations of the molecules first, i.e. to compute the
mean isotropic values of the respective powers of their tensorial interaction energy:

— 1
Vis o f [ V5205 0, 0)}dodo;. (&)

On inspection of the various forms of the energy V,; in sections 3 —5, it will be seen

that computation of V” implies averageing of the respective products of the tensors u,,
Uup> Opgand Q5. Th1s can be effected as follows: Let T,... be a tensor of arbitrary order,
given in a fixed coordinate system in three-dimensional space (X,), =1, 2, 3, and T,,,... —
one given in a coordinate system in motion with respect to the first one, (X,), 6=1, 2, 3. The

tensors are related by the transformation formula

Lo = 050050, ... T, (A.2)

afy tr

wherein, for rectangular coordinate systems (X,) and (X,), the transformation coefficients
g, -+ have the meaning of cosines of the angles subtended by the respective coordinate
axes of the systems. The directional cosines w,, and @, fulfill the conditions of normalization
and orthogonality:

O a5 = Ogp> ogeg = Oy - (A.3)

[11: 2l 7. 4

Thus, the problem of averageing the tensor T, ...reduces to that of averageing the
corresponding functions of the directional cosines over all possible orientations of the system
(X,) with respect to (X,). Tensorial summation over the indices o, 7 v,... leads to the fol-

lowing mean values of the functions of the directional cosines:

W5 = 5 0g60a 5

W 50,y Wy5 = & {(4 0 6 ye 6«76136 - 6u666y) 60761/9 +
+ (40,055 — 04508, = 0,50,4) 05,0, + (4 04808y — 045975 — 043088) Oug 0w}
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O 10 50, ® (503 0 = 515 {xlﬁné,eé i %904.0,10,, + %305:0,,0, 240,150,520 ., +
+ %50,400,0 11 + %g02,05,0 5 + ¥20,0 5,0, + %806,0 1200, + %905,0,03, + %1909 10630, +

= xllaruécm(se}. + xlzéagéﬂém + x13(sdg(sm(sw1 + x14érgéo’l(§m + x156mé¢m'§v}.} s (A4')
with the notation

2= 16a; —5(ag + a3+ ag + a5 + ag + ;) + 2 {ag + ay -+ ayy + ay5 + gy + agg F agy + ag),
%y =160y — 5(a, + a5+ g + ayy -+ a3+ ag5) + 2(ag + a5 -+ a5+ a, + ay + ayy + a4 ayy),
w3 = 16a3 — 5(a; + ay + a5 + @y + app -+ ay) + 2 (a3 + a5+ ag + ag + ag -+ ayg + ay+ ay),
%y =16as — 5(a; + a5+ ag + ayg + a3+ ay) + 2(ay + ag + ag + a7 + ag+ ayy + ayy + ag),
%5 =160, — 5(ay + ay + ag -+ ay + G+ agg) + 2(ag + ag+ ag + a; + ay + ay -+ agy+ ayy),
%g = 16as — 5 (ay -+ aq + ag + ay + ayy + ay) + 2(ap + a5+ oy + a5+ ayy + agy + agp + agy),
%y = 160y — 5(ay + ag+ a19F a1 & A + agg) + 2(ay + ay + g + ay + ag + ay - ayy + ay),
%5 = 1605 — 5(ay -+ a5 + ag + g + ayg + @) + 2(ay + ag+ ay + a; + ayy + agg + ayy + ag),
%y = 16ay — 5ag + ag+ a5 + ag + ay + ag) + 2(ay + ay + 5+ a5 4 ay + aye + @14+ ay),
¥y = 16a39 — 5 (ay + a, + a; + a5+ au—l—au)—f—'2(al+ ag + ag + ag+ ag + a5 + a3+ ag5),
# =160y, — S(az+ a5 + a; + ag + aye + a35) + 2 (ay + @y + g+ @5 + a5+ a3 + agy + ayy),
%19 = 16015 — 5 (a3 + @5 + a; + ag + agy + ay) + 2(a; + ay + ay + ag + @y + a9+ ay + ay5),
g = 16a13— 5 (ag + @y + a7 + ay + ayy + ag5) + 2(ay + a3+ a5 + ag + ag -+ ag + ayy + ayy),
%yg = 16ay, — 5 (ag + ay + ag + agg + g+ ag5) + 2 (a; 4 ag + a5 + @y + ag+ ay + ay + ag),
Zys = 16015 — 5 (g + a5+ a4 + ay; + g + a1 + 2(a + ag -+ ag+ a; + ag+ ay + aye + ayy),  (A5)
and

U = Opply sl ay = OapOyedon ag= 0469 ym0ses

a, = (5766”6,9,1, a5 = 0,504,086 5= 5£,,6wdﬁa,

@ = Oepfps08,, a5 = 040005y, @y = 84, 06,08s

@10 = 0e0py 05y 11 = Iy 080 2= Og0pedyny

13 = 0508 0yer Q14 = OgeOynOpsr 15 = Og,Dedpse (A.6)

With the formulas (A.4), the mean isotropic values of the respective powers of the
energy V; given in sections 3—b5 are readily computed.

Hence, if the interaction potential energy of a pair of dipolar molecules is given by
eq. (3.1), the following mean values result (in computing the terms accounting for the part
of the energy due to inductive interaction, only the ones linear in « have been retained):

V. 2 2 i) i
V= —(@pudy+ pirog) TR T,

72 __ 1,2 2 mi)mi
Vij =5 Bilg) Ta’t])T 02)7

Vi =— i {15 (apuln+ sihapuomd + 2 Bapdud—alus u)uf, +

+ 2P P —a PP} (TOTETOTD + STPTOTITE),
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- i e i
VE=Fubuly (TOTOTDT,D + 2TOTPTITEY,

75

2 ,,2
_ Mok

2410 2l (ol + ooy ploptn +

7 -
+ 4B3aBudul — abuPu ;) + ABaBuu—
— AP} (TOTOTOTOTHTE 1

+OTOTRTPTPTRTD + 8TOTP TP TR TNT,

Vg _ HOHMUG) {Tgfi)Tég)Tﬁg)ng)TEZ)ng)+

735
+OTOTOTITPTITE + 8TPTPTY TP TTD} (A7)

Likewise, for quadrupole molecules, eq. (4.1} yields

> 1 DO ) @ g) T4
Vi=— g (20905 + 05050, TR TY.
Vi L gOg@gnei T 76
Vi = g 090860003, T 5+

4 ) (D DO &)@ (D o, ) @) @) )
+ 4725 {“Sﬂ@gﬂ@% @VJS @613) + @atl%@gv@ﬁ"g“%]e)@dle} Tagl Tvgl T, a-lr]vq?
_—_3 16 . . . - 4 - + e .t IS
Vi = — o O60505,000300) T 0 T30 il (A.8)

For the case of polar molecules we have, by eqs. (5.1) and (A.4),

7,0
Vi = ity T TD + s (50005 - 0500uty) TRTE +
+ sat7s B 20, + 1030565367 +
+30 g%r‘Q%vM?i)} Téijv)eTz:i]Be’

—_’_“3 1 . . . - . - . o o 33 . .
V3= — U ORONO P TP TPTE, + 2 TOTHT) —

£ e Bl (Dl ol ) Al (D (Y G G
— o WS O050002 + 090000uP PO} TRTHTE, —
18 D ol BB G o admE @) e
— o 0900050000000 T T Tae
—Z 1 't 4 . Py i Iy .. Jys .
V= Lty (TOTOTOTY 4 2 TOTITITS) +
B O Bl D L O DG ST T TG
+ 505 Q0 1 5 1y + QB PPN TP TPTERT, + - (A.9)
The tensors T, T# and T), appearing in the foregoing expressions and characteriz-
ing dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interaction, respectively,
are defined as follows (see, Pople 1952): '

Gi 1
y peL— X {3 rijoTijs — 1% 0ar}
i .
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@ _ 3 2
Tou = r_7 {5 Tjolifeliiy — Tif (Iz'ja'(sw + rijr(saro = rijv(sn'r)}q
i

G 3 i
To'rvg = ;g“ {35 Fjol e il o — 5 Iy (rijrrrijréwg +
y
+ rijarijv(stg + rijury'gévr -+ rij-rrijv(sga + rijrrijg(srru +

T sdar) + 7% (008,04 00y 000D} (A.10)

i {jo~ o, oo

With the foregoing definitions, we have, for the various products of the tensors T

T and T appearing in eqs. (A.7) — (A.9),

ary oTYQ
D) _ 66 W PG PEHTE _ 1g,-12
TOTD = 658, THTHTHTS = 187712,

w T e
TOTOTIOTITITS = 66r%8,  TDTH = 90r;8,
TOTOTS = — 712,71, TOTDTE — 21611,
T TE, = 252071, THT@HTH = 1080573,
TSTPTPTE, = 216
TE T TH ~— 1944075 5. (A1)

In applying the expressions of eqs. (A.7) — (A.9) to molecules having the axial symme-
try, use is made of the following identities:

Baaﬁlumu’ﬂ—“aauﬂluﬁ = 60‘6/"2’
asOqp = 3000,  0,0,,—16?,

l“muﬁ@uﬂ = Ko, @zﬁ@uvgﬂr =10%
,ua,uﬂ,uVQaﬂy= 130, .Qaﬂquﬂy =202, (A.12)
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