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RAYLEIGH’S RATIO AND TURBIDITY OF IMPERFECT GASES
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General expressions for Rayleigh’s ratio and the turbidity are given, containing
the molecular constants S:; and S&° of isotropic and anisotropic light scattering. For
imperfect gases, the constants S,, and S5 can be expressed as a virial expansion in in-

verse powers of the molar volume. The second virial coefficients B'¢ and Bg"® of isotropic

and anisotropic light scattering are calculated for certain molecular models of dipole
and quadrupole molecules. The respective quantities are discussed and evaluated numeri-
cally for the imperfect gases CO,, NH;, CHgF, CH;CN and COS.

1. Introduction

Kammerlingh-Onnes’ equation, which is the equation of state of imperfect gases
in terms of an expansion in virial coefficients, represents an important method for the
investigation of intermolecular forces. In particular, the second virial coefficient B (T)
not only gives insight into the parameters determining the central forces (see, Lennard-
Jones 1924), but, moreover, provides information on the non-central intermolecular
forces (see, e.g., Stockmayer 1941, Hirschfelder et al. 1942, Rowlinson 1949, Pople
1954, Buckingham and Pople 1955 a).

In recent years, the method of expansion in virial coefficients was applied to the
theory of other measurable properties of imperfect gases. Harris and Alder (1953),
Buckingham and Pople (1955 b), Hill (1958), and Jansen (1958) proposed virial
theories of the dielectric permittivity of imperfect gases. Moreover, Buckingham
computed the second virial coefficient for the molecular Kerr constant (1955) and
molecular refraction (1956).

Similarly, information on the nature of the forces acting between the molecules
can be derived from an investigation of the divergence between light scattering in
a compressed and in an ideal gas. To this aim, a theory of the virial coefficients for
Rayleigh’s ratio S and the turbidity & of imperfect gases is proposed in the present
paper. In particular, the second virial coefficient for light scattering on different
models of dipole and quadrupole molecules is computed numerically.
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7192 S. Kielich

2. General formulation of the theory

By statistical-mechanical theory of classical light scattering, Rayleigh’s ratio
S and the turbidity % are given by (see, Kielich 1960)

S (n +2) (SIS + SamS)’ ’ (2.1)
167‘[ (I’L2 —I— 2) is anis
h= = (s +_s ) 2.2)

wherein ¥ is the molar volume of the scattering medium of refractive index n. The
molecular constants S¥ and S account for the molecular mechanism of isotropic
and anisotropic light scattering. In the case of a scattering medium consisting of N mol-
ecules of one kind, whose linear dimensions are small as compared to the light
wavelength A, we have

N N . ..
s 8at ng,’) Qm,(g’)\
Sm= g7 ’\Z Zl 9E, 9E, /° 23)
i=1 j=
genis _ 52n4 i ‘2 om& Qm(]’ ome ng) > 2.4)
" T Wi \ &y £ \P9F; 9, 9. Ok '

wherein m® is the a-component of the dipole moment induced in the i-th molecule
of the medium by the electric field E, of the light wave. Here, the brackets { ) are
intended to denote the statistical mean value, as defined by the formula

U(t)

ff fX(r)e *T dr, dty...dTy

U('r)

ff...fe_ ¥ dy, dr,...dtn

k — Bolizmann’s constant, T — the Kelvin temperature, U () — the total potential
energy of the system in the configuration 7.

For an anisotropic molecule immersed in the medium, m{) is given by the follow-
ing expansion due to Buckingham and Stephen (1957):

m® = i) (B + FP) + %ﬁ%y (Ep + F,%”) (Ep + F{) +

X) = (2.5)

+ 1750 (By + FP) (B, + FP) (By + FP) -+ oo 2.6)
with () denoting the polarizability tensor of the i-th molecule, and B4, and y@ s — its

hyperpolarizability tensors as discussed by Buckingham and Pople (1955 c). The tensors
Xopr Popy A Y44, account for the properties of the isolated molecule, and are sym-
metrical in all indices a, §, v and 4. F, ;’7 is the a-component of the molecular field
at the centre of the i-th molecule due to the charge distributions of all the others,
in the presence of the electric field .
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The application of the foregoing theory to imperfect gases consists in expanding
the molecular constants S and S in powers of 1/V:

C

Sk = A% + + 5+ - 2.7
Sanis _ Aanis + ams + Cams + (2 8)
m — 418 ——V V2 e .

The coefficients of the expansions 4%, Af'g"is, Bg, B:'g“is, Cg, C;"is, ... are termed the
first, second, third,... virial coefficient of isotropic and anisotropic light scattering,
respectively.
The first virial coefficients, 4% and 4%, characterize light scattering in a gas
whose molecules do not interact (ideal gas), and, with respect to eqs. (2.3), (2.4) and
(2.6), are given by

8= 8114 a?N, 2.9)
anis  92mt
As™ = 4‘514 (3“,,3 Xep — Xqq “ﬂﬂ) N, (210)

wherein o = 5&,, is the mean polarizability of an isolated molecule.

The second virial coefficients, Bi and B, relate to pairwise interaction between
the molecules. The remaining virial coefficients, C, Cg“is etc., account for the inter-
action of three, four etc. molecules of an imperfect gas. The coefficients yield a meas-
ure of the divergence between light scattering in a real gas and in an ideal gas. We
shall restrict ourselves to a discussion of the virial coefficients Bfé and B§“is only,
which, for a not too strongly compressed gas, account essentially for the divergence
from the ideal gas. By egs. (2.3), (2.4) and (2.9), (2.10), we have quite generally:

is 167t a2 N 8mt N2 ’ Uy
= R B+ o oAt fff(Vf,{,f pp — 9a%) e *T drijdw;dw;,

(2.11)

42 g - Yy
pp = 2 [ 67 v e drjionan. @1

Herein, the tensor

i 1[[om®  om®\ [om®  om{ 5 G
= (G 2} (27 2+ o), 219

and the second virial coefficient of the equation of state of the real gas (Pople, 1954)

Uy
B(T) [f (e *T ~1) dryde; do;, (2.14
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have been introduced; U;; denotes the total potential energy of interaction of the
i-th and j-th molecules, and T — the distance between their centres, the variables
o;, w; describing their respectlve orientations; 2 = f dw;, is the integral over angular
coordlnateq

3. First Approximation to the Theory

In the first approximation, a molecule of the imperfect gas under consideration
is assumed to possess the polarizability of one isolated, i.e. a polarizability independent
of the surrounding, neighbouring molecules. In this case, the expansion of eq. (2.6)
yields

ng o)
Xap> 3.1
9E, % (3.1)
and the virial coefficients (2.11) and (2.12) assume the form
is 16nt 22 N 8t a2 N2 Uy
Bg = — 24 B(T)— 1492 ff (6 T 1) d,'.udwl dwj,
anis 5274 N? i G
Bs” = 1515 02 [/' @Bay o) — al) af) e kT dr;jdw; dow; . (3.2)

Hence, it is seen that the second virial coefficient of isotropic light scattering, 'Bf;, is
accounted for directly by the second virial coefficient B (T') of the equation of state
of the imperfect gas only if the molecules exhibit a polarizability that is unaffected
by the presence of their neighbours.

The total potential energy Uj; consists of the energy U° (r;;) related to the exist-
ence of central forces of attraction and repulsion acting between the molecules,
and of the energy V= u (r,

Iy;s @, @;) resulting from non-central electric intermolec-

ular forces:
Uy=U® () + 7,

The energy V;; will now be considered to represent a perturbation in U@ (7, i)
so that the virial coeffl(:lents B and B¥ of eq. (3.2) can be expanded as follows:

U0

i o 8RNI 1. 1\n[ = -2 i
BS = centrBs + — }. Z nl < kT) Vl] &T d"','j,

n=1

(3.3)
U0
anis 5274 N? 1 - - — i
B = 15}.4 Z n! ( k.T) f( ilg (GJI; Vt] —3“ V,]) 6 kT drij’

wherein
vt e

. 4 42 N2
cemrBls 8 “ N f ( TR 1) drii ’ (34')
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is the second virial coefficient of isotropic light scattering, dependent only on
the model of central intermolecular forces; the horizontal line is to denote 1sotropic

averageing: ,
= 1 '
X= oF [[X(w) dw; dw;,

i.e. integration over all possible configurations of either molecule.
"The virial coefficients, as given by eq. (3.3), will now be computed for some models
of the potential energy V;; of electrostatic interaction between the molecules.
Dipole molecules. The potential energy of electrostatic interaction between two
dipole molecules is

V — /U lu(J) T(u) (3_5)

wherein ;@ is the «-component of the permanent dipole moment of the i-th isolated
molecule, and

i) __ 1 2 . .
Ted = = {r;jOus — 3rijariipys T, (3.6)
Tij

is the tensor of dipole-dipole interaction.
Substitution of (3.5) in eq. (3.3), with the isotropic mean values V%and acg‘; apve
of Appendix B, yields

is is 8mt a2 ut N2 —
dipPs = centrBS + mgT {< > + 251{}2T2 < 12> -+ }, (37)
aﬂlS 26n N2 12 —
e N VLY ENE (3%ag e g — %aq 115)? {< > + 49k2MT2 <rij 12> + }9
(3.8)
wherein
(o)(,u)
™ = fr,;" e dr, (3.9}

is a quantity that depends solely on the model of central forces.

In the case of a molecule having the axial symmetry, with the axis of symmetry
directed along the 3-axis, the following tensor compotents of y, and O, Ar€ NON-ZETO:
Mg = M, Xy = Ggg = &, Qg3 = &3

hence,
3y g Mg — Cgg ,u§ = 60 O, u?, (3.10y

wherein the quantity

e %i— 311
Oa 3a OC“—i—Z(Z_L (3-11)
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accounts for the anisotropy of polarizability of the isolated molecule.
By (3.10), eq. (3.8) reduces to

anis  104mta? 8 utN? - 12 -
gipBs = ——3—7574—]7;7:2— {(fij6> + 49];1«2 12} + .. } (3.12)

valid for axially symmetric molecules.

We shall now proceed a step further, and shall take account of inductive inter-
action between the dipole molecules. Now, for anisotropically polarizable molecules,
we have (see, Appendix A) '

V — /,(t) ) T;g) _% ( Bﬂy)ﬂgj) + a‘(z.%) ;“(') (z)) T(z]) T(u) o, (3.13)

wherein, in addition to the first term accounting for dipole-dipole interaction, terms
determining the inductive effect of dipole-induced dipole interaction appear.

With the previous expression for V, the virial coefficients are now

i
is is 1674 o2 H2N2 -8 2/1,2
s = dipBS -+ —W {“ <r,'j > + 7—5—15572 [15“ ‘1,02 b

+ 2 (3 i ptp — Oam )] <rij > + } (3.14)

anis anis 5274 N2 —
Bs"™ = gipBs + 5352 33758 kT (Baas g g — %an /MzS) {(3“70 Ay — Kyy %ss) <’ij6> =+

12/1,

10K T2 [4 (30,5 Xy — Ky Ooe) o phs + (306 oy fs — Uy H3) Ges +

._|_

- (Boty0 @ys — Xy Xao) 2] <17 2 + } (3.15)
wherein the quantities dipBi§ and dipBi‘g“is are given by eqs. (3.7) and (3.8).
By eq. (3.10) and the relations
30,5 %yp _ Hyq Cpp = 18 2% 82,
(Bt 0tyy — Ugq %gy) Mg 1y, = 6028, (1 + 26,) 1%, (3.16)

eqs. (3.14) and (3.15) yield, for axially symmetric molecules,

167 a® 12 N2

BS = wBS + ——i 77 {<r” >t e kz 72 (6 + 409 ™ + } (3.17)

125A4 kT {6 <rij >+ e 49k2 72 7+ 1 Oe) <r >4 .

(3.18)

anis anis
B s - 1pB +
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Thus, the additional contributions to B and B2 from inductive interaction between
dipole molecules have been computed.

Quadrupole molecules. For non-dipolar, anisotropically polarizable molecules
possessing a quadrupole moment given by the tensor 0,4 the potential energy of
electrostatic interaction is (see, Appendix 4)

Vii=—1%608 69 TEs — 35 (25 0.7 0D + aff) 6%) O TIM T 1 ..., (3.19)

ayd * fen

the first term accounting for the energy of quadrupole-quadrupole interaction, whereas
the second determines that of quadrupole-induced dipole interaction.
Substitution of the foregoing in eq. (3.3) yields

is is 16: a2 N2 _
quadls§ == centrBS + 175-514 kT @uﬂ @aﬂ {15“ <rz] > + 3kT @yd 0«/6 <r 10> + '..},

(3.20)

i 2087t N2 . —
quadDs 272578 i \W%ap Yay Upy — Xaq Upy Upy de Xos — X5 Xeg) Tij
BY® — (B%ap Ouy Op, — Xgq Op, O,) 1 (3 s %ee) <157 0> +

3]CT (30(,58 @5,7 an — Xgs @EVI @677) <r;10> -+ } (321)

Herein, the terms in {r7®) result from quadrupole-induced dipole interaction,
whereas those in {r7!%) — from quadrupole-quadrupole interaction.
In the case of molecules exhibiting the axial symmetry, we have

Ous Oup = 56%  32,0,,0, —a,,0;0, =3as,6, (322

and the virial coefficients of eqs. (3.20) and (3.21) reduce to

is is 8t “202]\72 —10

aundBE = coneB5 + o T {150: ity 4+ 12 T oS+ } (3.23)
wis 20874 a2 62 O2 N2 10 }

By = = e {30:5 a5t + 22 T Yoy b oy

with @ = @33 = —20;; = —2 6,, denoting the quadrupole moment of the axially
symmetric molecule.

Polar molecules. For molecules exhibiting both a dipole and quadrupole mo-
ment, the potential energy V. is given by (see, Appendix 4)

V = // /4(') T(u) +1 (,u(‘) @(;) @(t) M(I)) Tii‘lj; @(1) @(]) Tég};é + .y (3.25)

wherein the terms account for dipole-dipole (r5®), dipole-quadrupole (7% and
quadrupole-quadrupole (r7®) interaction, respectlvely
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With the foregoing expression, and by the formulas of Appendix B, eq. (3.3) yields

is s lomt a2 N2 _ 6 -
BS = dip?s + 314 k2 T2 {qu @zﬁ Quﬂ <’ii8> - ﬁ’_l_“ (@uﬁ Ha :“ﬁ)2 <riju> + }7

(3.26)

BE® = 4,BF" + 1%% =(306uﬁ/hz thg— L 1) (3% Oye O pe— 2,05, O) (177> —
— 5—27 (3ap Oy g oy — Xgp Oup iy — %ag Opy pis py)? ity —

O 38,0 0,0-4 4 (5 0 — 5 O ] S+ ), 527

wherein the quantities 4 B and 4 B¥™ are given by eqs. (3.7) and (3.8).
For molecules exhibiting the axial symmetry,

30,50, 11510, — %gp Op pE— 0, Op, gt =3 ad, %0, (3.28)
and hence the virial coefficients of eqgs. (3.26) and (3.27) reduce to
s 8nta? [uz 6% N? —8 —11 p
9 - leBS + 14 L2 T2 <rif > SkT < Tij > + . (329)

208n% o), 02 u? @2 N?

Bgms — dlpBamS + e 2 72 {<r;8> o

e _
k_/;<rij1‘>+...}. (3.30)

4. Further approximations to the theory

Further approximations to the theory should account for the fact that, in a suffi-
ciently condensed gas, the polarizability of a molecule is affected by the presence of
its neighbours, and that the molecules exhibit the effect of hyperpolarizability. Bucking-
ham and Stephen’s expansion as given by eq. (2.6) should now be applied, yielding
the following expression for the differential polarizability of the i-th molecule in the
absence of an external field:

ng) @) (¥) (1) 1 @ ) aFl(;)
(_Q—EX‘)E._ - { 3+ Basr 'y 2 Vaips I Fs” 4 ... gy -+ ﬁ; .
4.1)

F,
Z)_E—ﬁ’ the virial coefficients of eqs. (2.11) and

4

Neglecting herein the terms in

(2.12) are obtained in the form

is 16m* 2® N 8niN2 | ; P L
Bs= — 74 B(T) + 974 02 jff{(“() (])) (ﬂ%ﬁgv Fg/) -+ 18;373)7 FE,]) -+

Uy
+1 wﬁ)yd F(z)F(t) +} y(/) F(])F(!) w) ) e kT drij do; dwj, (4.2)
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amis D2t N2 : i ' ) Fu

B = e ff {803 o — a2 off + 3 () + o) (6, ) + PR FY +

+ 3B FOFD + 19D FPFP + ) — @ + o (B, F9 + B3, FP +
o - by

+ 395, FOFP + % Y3 FOFP 4 )+ ..} e * drjdo,dw;, (4.3)

The foregoing expressions will now.be discussed separately for quadrupole and
dipole molecules.

Quadrupole molecules. Since f,5, = 0 for non-dipolar molecules, and since the
electric field at the centre of the i-th molecule due to the quadrupole of the j-th mole-
cule is (see, Appendix A)

Féi) L T(u) @fgly)’ (4.4)
eqs. (4.2) and (4.3) yield with respect to (3.19)
s s 32mta N?
BS - quadBS + — l Vaaﬁﬁ@yé @yd <ru > + .. (4‘5)’
nis anis . 104m? N2
Bs™ = q“adBSns + - 09453 {7 (3%ap Yapyy — %aa Vo) Oss Ooc +
+ 4 azpp (3% Ope Ose — @y O, )} (rif > + o (4.6}
the quantities .., BS and . .BY" being given by egs. (3.20) and (3.21).

In the case of axially symmetric molecules, we have the following non-zero tensor
components of y,, 5 (see, Buckingham and Stephen, 1957):

Vi = Veme = 3Vnee = V> Viiss = Vasss = i (V” +v1) Vs = V>

whence

3%up Vapyy — Oag Vopvy — 2layd,0,, 4.7y

the quantities

_ v _ 1 9 4
yielding a measure of the anisotropy of hyperpolarizability and the mean hyperpolari-
‘zability of a non-dipolar molecule, respectively. With respect to egs. (3.22) and (4.7),
the virial coefficients are given by the expressions

is is 80 o @2N2
8 = quaB + g i A e *9)

527t ay 6, (20 + 499,) O3 N2

10572 G s (410)

anis anis
B quadB +
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which contain terms accounting for the effect of the hyperpolarizability of the mole-
cules on light scattering in an imperfect non-dipolar gas.

Dipole molecules. For simplicity, the terms relating to the tensor y,4,, will now
be omitted in eqs. (4.2) and (4.3) and the problem restricted to one of dipole-dipole
interaction. In the present case, in addition to V; as given by eq. (3.5), account should
be taken of the molecular field F{given rise to at the centre of the i-th molecule by
the dipole of the j-th one: .

FO = — T%) P%n; (4.11)

thus, by the formulas of Appendix B, eqs. (4.2) and (4.3) yield

is is |, 6data ~
S = dipBS + glf}]:;f”ﬁ {< > + 557273 25k2T2 7 ]2> + .. }’ (4"12)

anis anis 20872 N2
Bs” = gipBs™ + 13524kT{(3““’3 Bapy — %aa Bppy) v I ((r,] >+

4 - 1 )
+ﬁﬁ%ﬁ<mm>+")‘*ngammuﬁ—amu@mwua@mﬁ>+

12u4 - 612
t ZLQIcI‘:LT2 as ) + 1225%@ (3%ap fta ptp — %aa ) (BPyse iy —

- ;Byyﬁ ﬂe) HUs e <ri712> + }a (4:13)

the virial coefficients diprS? and 4 B¥ being given by the expressions of eqs. (3.7)
and (3.8).

For molecules exhibiting the axial symmetry,

dip

Mg =, Pagz = ﬂua Biis = Pas = ﬂ_L’

whence
B0gp Bapy My — Xag Bapy 1ty = 18@f 0, 0511,
(BBuapy e = Buap 1ty) 1 1ty = 605 13, (4.14)

wherein the quantities

4 =PIl =5 1+ 280 (@.19)

vield a measure of the anisotropy of hyperpolarizability and the mean hyperpolariza-
bility of a dipolar molecule, respectively.
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Substitution of (3.10) and (4.14) in eqs. (4.12) and 4.13) yields the virial coefficients
for axially symmetric, hyperpolarizable dipole molecules as follows:

s , Odat N2 _
B —giBS + 2= f;’ifT {< 6y + 25k2 T2< 12y } 4.16)

anis anis 4‘16754 a 5 3 N2 _
Bs™ = apBs™ + 375‘242‘;1 {(1 + 258g) <rij 6> +
6:“ 1 —12
+ Wi T 2 +5Ldg) <rij ) + ey “4.17)

Dipole molecules of variable polarizability. In the present section the terms

2]
IE, .
ing additional contributions to the constant polarizability a,, of the isolated molecule,
will be considered. However, in order to avoid further complicating the calcula-
tions, the hyperpolarizability terms of eq. (4.1) will be dropped; Kirkwood’s method
(1936) now yields, for anisotropically polarizable molecules,

am(i)
(9; TR BT AR TR o (419
X

and the virial coefficients of egs. (2.11) and (2.12) can be represented in the form

s 167402 N 16mt N N ;
m:—T—wmmeﬂ{mmM%u

Uij

— o) D R TH + e *T drydew; dw;, (4.19)

am 527t4N 1 ) 1 i 1

= S ([ 343 3 o o) — 20485 23— o2 ) R 19 —

Uy )

— 233} oy — ash af) oy T4R + Y e *T dryido;dwy. (4.20)
Substitution of (3.5) yields
; 5 . l6mta N
Bs = aipBs + GEE e (00ept —

— (3%ap fha 15 — aa 143)} (B%ys oy phs — oy ) 137" Y + wevs (4.21)

anis anis ].040!4 N 2
Bs™ = gpBs + 101254 ;2 T2 {10 (30gp Xap — Xau %pp) (3%ys iy fs — Oy we) u® +

+ [300 p2 — (30tap o 1 — e #3)] [3 (Btyo Otye — oty Xoc) s phe —
— (Btys xys — Xyy Xoo) p*]} TR (4.22)
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Hence, by eqs. (3.10) and (3.16), we have, for axially symmetric molecules

is s 64ntad 9, (10 — 8,) ut N% |, _
Bs = qipBs + 75‘}4 72 T2“ iy 4, (4.23)

anis anis 4‘16754053‘50; (5 + 46, + 962) ,u4 N2
B = 4ipB5™” + 375 k;‘Tz G 4. (4.249)

5. Discussion and conclusions

In computing the virial coefficients B and B2 in sections 3 and 4, no assump-
tions were made as to the form of the potential energy of central interaction between
the molecules. It will be remembered that Lennard-Jones (1924) proposed the follow-
ing general expression for U® (r):

UO (r;) = — in’l 4 11;'}; m > n, (5.1)
T,']' rii

the first term accounting for the energy of atiraction and the second — for that of
repulsion between the molecules. The constants 4, and 2, and the exponents n and m
can be determined experimentally.

To simplify, the Lennard-Jones potentjal will henceforth be applied in the form

(see, Pople 1954)
po\ 12 - \8
U<°>(r,-f)=4e{(,—f’.) - (—> ! 652
17 t]

wherein ¢ represents the negative value of the lowest potential energy and ry is the
intermolecular distance r; at which the attractive and repulsive energies exactly
balance.

By the Lennard-Jones method (1924), with respect to eq. (5.2), we have (see,

Buckingham and Pople 1955 a)

o g,

- ~ 2 rd
(¢ ¥ —Ddr;= Wgo {Hs(y) — 2H (1)} (5-3)
0
e U(O)('j)
—n oy — qErd—n
<rij > ::frij e kT dr,-j == "?;Z“Hn(y)’ (54')
0
wherein
27—n X
6m 4 n—3\ ym ' 4e
6 A 2.
H() =y ZOP(MIZ ) i V= (5.5)
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are functions introduced by Pople (1954); these have been discussed and their values
tabulated by Buckingham and Pople (1955 a).

Egs. (5.3) and (5.4) can serve for putting the virial coefficients B and B3,
as calculated previously, in a form adapted to numerical evaluations, provided the
central force parameters ¢ and r, as well as other molecular parameters, such as «
and u, whose values for some gases are assembled in Table I, are known.

Table I. Numerical values of the molecular parametersand of Aig and A?Snis (A = 4358 A) for some
imperfect gases.

Gases CO, NH, CH,F CH,CN COS
u X 1018 e.sau. 0 1,47 1.82 3.50 0.72
0y x 10% em? 4491 2421 3.16 2 5.43 2 9.62 ¥
o X 10* em? 214D 218 1 2.32 % 3.70 » 3.73 8
a x 10%* cm® 2.92 2.26 2.6 4.27 5.69
O, 0.27 0.04 0.11 0.13 0.34
ro X 108 cm 3.995 9 2.60 %) 3.33 9 4027 4138
ek °K 190.0 4 320.0 205.0 & 400.0 V 335.0 ®
is (cm2)
Ag | — | x10* 11.03 6.62 8.75 24.25 42.04
mol
i [ cm?
A" <__) x 104 2.04 0.03 0.28 1.1 12.61
mol
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(i) Quadrupole molecules. For anisotropic molecules possessing a quadrupole mo-
ment, eqs. (3.23) and (3.24) yield for the Lennard-Jones model

is s . T a2@* N2 |60« 762
quadBS = centrS + Wg_g— {W HB (_y) =+ 7'3—8 HIO (y)}7 (56)
anis 2675 a? 8} O N2 [6ad, 62 }
quadBS - 52514 r(2) ¢ {78 yz HS (y) + @ HIO (y) ’ (5‘7)
1675 a 13 N2 1674 a2 N

centrBESS‘ = W_yr— {H6 (_'Y) -2 H12 (}’)} = "—14'— B® (T) (58)
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Assuming a value of @ = 5.20 x 10728 e.s.u. for the carbon dioxide molecule
(see, Buckingham and Pople 1955 b) in addition of the data of Table I, the foregoing
formulas yield, at T = 300°K,

. _ i _gp cm® _ _p Cm
BY = (3179 + 1.86 + 9.59) x 1072 22 — 43,24 x 1072 2,

quad

anis 10—¢ cm?® 1 2
quaaBF® = (014 + 14.4) x 1074 =5 — 0.15 x 10~ 12

Thus, in the case of isotropic light scattering, the contribution from non-central

intermolecular forces, (1.86 + 9.59) x 10~ 2 ¢ is seen to amount to 269%, of the

12
total value of quangv one fifth thereof resulting from quadrupole-induced dipole
interaction, and the remaining four fifths — from the quadrupole-quadrupole interac-
tion predominating in the case under consideration. The second virial coefficient of
anisotropic light scattering, qu-ang“is, yields a contribution that is barely 0,4% of that
of 14agBss and so plays practically no part at all here.

By eqs. (5.3) and (5.4), the effect of hyperpolarizability on light scattering as
given by eqs. (4.9) and (4.10) assumes the form

is is 80n5 06)/@2 N2
BS — quadDs + ——9”4—'%}/7— HS (y) —I- ceey (5.9)

5205 ayd, (20 + 496,) 02 N2
3154475 4% i 0)

Bams quad Bams + (5 10)

Assuming a value of y = 25 x 10726 e.s.u. for the CO, molecule, eq. (5.9) yields

B = LB 40,25 x 1072

quad

12’

thus, the effect of the hyperpolarizability of non-dipolar molecules on B is quite
unimportant in the present case.
(i) Dipole molecules. By (5.3) and (5.4), the expressions of eqs. (3.7) and (3.12)

now assume the form

is is | T 052 1N 3
dipBS”“‘centrBS“{" 18};4 3 £2 { 6( ) + 463 2/82 12('y)+ "-}, (5].].)

1375 a2 &} ut N2

amis Butyt
dipBs = T29503 13 7 {Hs o) + 10678 52 Hy (y) + .. } (6.12)

The expressions of eqs. (3.17) and (3.18) which, in addition to dipole-dipole
interaction, account for dipole-induced dipole interaction, can now be written as
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follows:
s s Aadad pl N2
S = dip S_I_ 324 3 { 6( )+2003 2(5+46¢)H12(y) }’ (5']'3)
anis anis 52n5 &® 8, ;uz N? y
B == dipBS + 37514 :3 Sy {6 H (J’) 196 s 2 (7 + 116“) H12 (y) + }
(5.14)

" Table I Theoretical values of virial coefficients Bg and B:'gnis of light scattering, in cm®/mol?.

central-forces di? ole-il.lduced dipole-dipole
. dipole inter- | . . total
potential . interaction
action
NH, B x 10 7.36 6.63 32.11 46.10
T = 320°K BS 5 10 0 0.003 0.45 0.453
CH,F B x 102 9.06 4.53 20.83 34.42
T = 320°K BN 5 101 0 0.02 3.04 3.06
CH,CN B x 102 153.72 67.64 | 707.11 928.47
T = 400°K B 10t 0 0.2 113.0 113.20

In Table II, the numerical values of the virial coefficients B and B¥ computed
from the foregoing formulas for the dipole gases NH,, CH,F and CH;CN are asembled.
Each of the respective values is split in three parts, the first accounting for the contri-
bution from light scattering due solely to the presence of central forces. The second
and third parts are contributions arising from the fact that, in addition to central forces,
also forces of electrostatic i.e. dipole-induced dipole and dipole-dipole interaction
are present. The data in Table I prove immediately that the principal contribution
to the total value of BY is related to the non-central forces, the inductive effect playing
a lesser part as compared with the considerable dipole-dipole interaction. As to the
second virial coefficient of anisotropic light scattering, its contribution to the total
is negligible. The latter conclusion was reached earlier by Benoit and Stockmayer
(1956) in their theory of the degree of depolarisation of imperfect gases.

Egs. (4.16) and (4.17), which accounted for the effect of the hyperpolarizability
of the molecules on light scattering in a dipole gas, now assume the form

1675 afud N*

B‘ZS_ is 3M4y4 H 515
S = dip s + 9l4r3sy 6(}’)"|‘W 12()’)+ s ( )

104005 288, 1 N

Bams — dlpBams + Wﬁ-" :(1 + 256[3) H ()’)

3u

+39262

@+ 510 By ) + |- (5.16)



726 S. Kielich

To exemplify, in the case of CH,F, with the data of Table I and a value of §
=10 x 10730 e.s.u. (see, Buckingham 1956), eq. (5.15) yields
cm®
mol2’

B = 4B 4 20.5 x 107

'Thus, the contribution due to the effect of the hyperpolarizability of the dipole mole-
5
Bis = 34.42 x 1072 <= This

cules is seen to amount to 609, of the value of AT

dip
points to the possibility of a quite considerable effect of the hyperpolarizability of
the molecules on light scattering in a dipole imperfect gas, and the situation resembles
the one found to exist in a dipole liquid by Buckingham and Stephen (1957).

By eqgs. (5.3) and (5.4), eqs. (4.23) and (4.24) can be rewritten as follows:

475 3 §,, (10 — 8,) u* N?
22574 1§ &2

2675 a® 5, (5 + 48, + 987) ut N2
1125 24 7§ &2

BS = 4B -+ Hy () + ..., (5.17)

BS™ = 4,BS™" + Hy(y) + ... (5.18)
The contribution to isotropic light scattering resulting f{rom the effect of the
molecular field on the polarizability of the molecules is very small, amounting to
barely 0,3% in CH,F, and to 1% in CH,CN.
(ii*) Dipole-quadrupolé molecules. With the Lennard-Jones model, eqs. (3.29)
and (3.30) can be rewritten as follows:

78 o2 /"2 ®2 N2

. . 2,2 ~
Bs = aipBs + T {Hs () — g—rgy; Hy (y) + }’ (5.19)

anis anis 1375 a2 5i /1«2 62 N2 quyZ
BS = dipBS + 595 24 r05 82 {HS (_’y) - 2ng Hll (y) + e s (5.20)

the quantities 4 B and aipBE® being given by eqs. (5.11) and (5.12).

For COS, we have yu = 0.72 x 1078 e.su, and © = 2.9 x 10°% es.u. (see,
Gordy et al. 1953) in addition to the figures of Table I, and eq. (5.19) yields, for
T = 335°K,

cm?

B = (189.5 + 1.21 + 2.48) x 1072 —
Here, the contributions of dipole-dipole interaction (the second figure in the brackets)
and dipole-quadrupole interaction (the third value) to B are very small, as compared
cmb
mol?
this is due to the small numerical value of the dipole moment of the COS molecule.
In the present case, dipole-induced dipole interaction plays a greater part; by eq.

with the value of 189,5 x 10-2 resulting from the central forces alone. Clearly,
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cm?® .
(5.13), it contributes to B to the amount of 3.95 x 10-2 o2 The same is true

of quadrupole-quadrupole and quadrupole-induced dipole interaction; by eq. (5.6),

mb

c
their contribution is 6.5 x 102 SN . Thus, the entire contribution resulting from
mo

electrostatic interaction forces amounts to 14.14 x 102 which is 89, of that

12 ’
of the forces of central interaction.

The immediate conclusion from the examples discussed above is that, in principle,
divergences between light scattering by an imperfect gas and by a perfect gas should
be expected to reside only in the isotropic light scattering, accessible to investigation
in the quantity Bf. For molecules having a constant polarizability, BY is given directly
by the second virial coefficient B (T) of the equation of state of imperfect gases. In
the general case the mean hyperpolarizability of the dipole or quadrupole molecules
can be determined from the experimental values of Bf and B (T). Hence, parallel
theoretical and experimental investigation of light scattering in imperfect gases should
provide new and valuable information on the intermolecular forces and, moreover,
on the effect of hyperpolarizability of the molecules.

The author wishes to express his great indebtedness to Professor Dr A. Piekara
for his interest in the present investigation and for his helpful discussions.

Appendix A.

Potential energy of electrostatic interaction between two molecules. The poten-
tial of the field at the centre of the i-th molecule due to the electric charges of the
j-th molecule can be represented by the expansion

& o (1)1 1\ 14 1
7 =— — 4 1 (—) + 5 46l Va Vs (—) — ¢ v va Vv <7) + o
(A.1)
wherein the quantities
N =3 &),
[uij) = Z i fjw), (A.2)

(1) — Z e(]) (J) rflf)

lifﬂ)y:‘—_ Z e(]) (’) r(;g) rf{V), ey
n

account respectively for the electric unipole, dipole, quadrupole, octupole, ... 2"-pole
moments; e’ — is the n-th electric charge of the j-th molecule, ) — its radius
. )

vector, T = 7';; — the vector connecting the centres of both molecules, and Vo= g
*

— Hamilton’s differential operator.
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By (A. 1), the potential energy of electrostatic interaction between two neutral
molecules is obtained in the form (see, Pople 1952; Jansen 1958)

V=@ P TP + 3 P ) — B ) TG+
3 QU1 — 3q8) ¢ + 219, 4P) TD, - .. (A.3)

wherein the tensors

Tij

1 : 1 )

Téjg!’E_ Ve Vﬁ Vy Ve (r_)” (A4«)
iy

account respectively for dipole-dipole, dipole-quadrupole, quadrupole-quadrupole etc.
interaction; these are to be found in explicite form in Pople’s paper (1952).

With regard to Laplace’s equation, the following tensors of the quadrupole and
octupole moments of the molecule appear (see, Buckingham, 1959):

00 = % (34) — q,, 0,p)-

OB, = 3 (519, — 1D, 05, — 15; 8,0 — byas 00p)s (A.5)

aBy afy B3d Vye

and eq. (A.3) can now be rewritten in the form

Vo= 1P T + 30 00 — 69,5 T, +

+ 35 Bu s — 503 00 + 303, 1§) Tihs + - (A.6)

aBy

where the multipole moment tensors are symmetric in all indices.

By the expansion of eq. (A.1) and the definitions of eqs. (A.4), and (A.5), the
electric field due to the charge distribution of the j-th molecule at the centre of the
i-th molecule is

FO= —p = —THD P 4 3 TH 09 — X TP 0D 4+ ... (AT

afy

For polarizable molecules, account should also be taken of the potential energy
related to the effect of induction; this energy is, quite generally, given by

pisd — 3 (a8 FOF + «Q) FO FY). (A.8)
Substitution of (A.7) herein yields
Vi = P P + o9 ) TP T
P800 + o300 TH 75 -
~ 4 B6R6P + 026D TH T +

35 0 D O, + a9 OD) T 1D, — + . (A9)

y =" den.
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Appendix B.

Isotropic averages. With the potential energy of electrostatic molecular interac-
tion of eq. (A.6), the following mean isotropic values result:

T @) 7 _
Vi=20, “a:ﬁ“]}Vij“o’

g
Vo= g wt T TP 4+ 2 045 005 TSR TE + 5= (Oep Ocs)® TS50 TS50,
V3= = i Oup e (TP TP TP, + 21 TH T,

V3 = — o (Oup te i)? (150 TP TS, 4+ 278D TR T,

Vi = o 18 (180 T 19 190 1 279 T 7 T,

—i_—T——— 1 i' i.

gy a3 Vij = y3g5 (45002 ut + (3tap pa ttp — ua 45)%} 167 T67 +
2

+ 14175 {3152 U2 Opp Opp + 2(3tap Oy Opy — %aq Opy Opy) (3ae s pte —

— s 2} TS T - 1 {44102 (045 Opp)? + 8(3tap Opy Opy —

297675
— Xge @ﬂv @87)2} ngijze Tt%)'e » (B-l)
——i—'— 1
aBaB V= — Tio95 4410® (Oap e p)* + 8(30tap Oy g iy —

— Xgp Qaﬂ ;uf' — X Qﬁy Hs /"7)2} {T‘Sitj) ng) Tgij;)rg =+ 2T¢Sirj) T(Sl;.'iq) Tg{g} —_
2 ,
— 53075 U7 [3%p Oap 47 + 4 35 Oy — oy Op)) 115 1] X Oe 4 —
— 32 (30t Oy 15 1ty — Cag Oup 15, — @ Opy 415 1)} TEP TR T,

S . e e
eBaR V= k- TR TP TP TP + 20 1P TP 1) +

4 Iy ,s o . 9 . L g
+ ———1{625-' (3ap Ha fig — %aq 1d)? (10 TSP T T TG _ 78 T T TW),

The products of the tensors TS, TW) and T are, respectively,

ot ? oTve
T T = 6r8, T T T T = 18r12,
. . _8 L. L . _
TE T3 = 90r5%, T30, 140, = 2520157,

THTHTH = — 1271, T THD TE) = —216r;1L (B.2)

avg ~ TrQ
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With the foregoing values, eq. (3.3) readily yields eqs. (3.7) and (3.8) or (3.26) and
3.27).

With the dipole-dipole interaction energy of eq. (3.5) and the molecular
field in the form (4.11), the following non-zero mean values are finally obtained:

BOFQ V= — 3 1% Bogg 115 75%,
Bas FRVE = — 81 Buas 15 5™
x%) /3(1) F(l) Vg = — 3 14 0gg Bapy 11, 755 °
dQ D FP V= — s vmﬁ 1168750 12 F (3t 1y 115 = %y 13} 5% (B3)
(’) ﬂm F(’) V3 = — 53 118 Upp Papy 11y T 7
o) D FNVE = — ;—g— A Bogp g 75— "1‘2%3 {20 Bazg 15 +

+ (3/3013‘/ Ho Mgty — ﬂaay g /UZ)} (3“&; U s — Xss /UZ) e

Substitution of (B.1) for ® = 0, and of the foregoing relations in eq;: YLZ) and
(4.3) leads directly to the virial coefficients of light scattering of eqs. (4. 12) am 4.13).
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