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MOLECULAR THEORY OF LIGHT SCATTERING
BY MULTI-COMPONENT. SYSTEMS

By S. KiELicH

Institute of Physics, Polish Academy of Sciences, Poznan
(Received March 31, 1960)

A molecular theory of light scattering by multi-component systems of optically
anisotropic molecules is proposed. General expressions, accounting for the degree of
depolarization D of the light scattered, for Rayleigh’s ratio S, and for the turbidity A of
the medium are derived. These expressions contain the molecular factors Fi; and Fy;q
of isotropic and anisotropic light scattering, respectively, which are discussed with
special reference to multi-component systems of: (i) anisotropic molecules with constant
polarizability, (i{) dipolar molecules with hyperpolarizability, and (iii) non-dipolar
molecules with quadrupole moments. Formulas are derived relating anisotropic light
scattering and the optico-optical birefringence of the medium, and others relating iso-
tropic light scattering to the divergence between the molecular refraction of the substance
in the condensed and gaseous states. Applications to one-component systems are given.

1. Introduction

Proceeding from ideas of Lord Rayleigh (1899) and Smoluchowski (1908), Ein-
stein (1910) developed a phenomenological theory of light scattering by homogeneous
and non-homogeneous liquids consisting of optically isotropic molecules.

According to the Einstein-Smoluchowski theory, light scattering in solutions
of liquids is due to local fluctuations of the density and fluctuations of the concentra-
tion of the solution. The theory was verified experimentally by Raman and co-workers
(1923). The phenomenological theory of light scattering by multi-component systems
was further developed by Debye (1947), Kirkwood and Goldberg (1950), Stockmayer
(1950), Fiirth and Williams (1954), Tatsuo Ooi (1958) and Hill (1959).

The theories of these authors dealt with isotropic light scattering only. In the
general case, anisotropic light scattering, resulting from optical anisotropy of the
molecules or from anisotropy of the molecular field existing within the medium,
should also be accounted for. Thus, within a condensed medium consisting of aniso-
tropic molecules, in addition to radial correlations, angular intermolecular correla-
tions intervene. This latter fact was taken into account by Benoit and Weill (1956,
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1958) in computing the optical anisotropy of light scattered by dilute two-component
systems of anisotropic molecules.

In the present paper, a general statistical-molecular theory of light scattering
by multi-component systems of optically anisotropic and polar molecules is proposed.
The fundamental equation of the intensity of the light scattered is derived, containing
the molecular factors Fy, and F, ; , which account for isotropic and anisotropic scat-

tering, respectively. The equation is discussed for a number of special cases.

2. The general theory

Let us consider an isotropic medium as represented by a spherical specimen
of macroscopic size. We shall consider the molar volume ¥ therein, containing x,N,
%N, ... molecules of components 1, 2, ... respectively, with N denoting Avogadro’s
number, and x; — the mole fraction of the i-th component. The molar volume is
given by )

v =2 am, (2.1)
0 4~
1
wherein summation extends over all the components of the system, M, denotes
the molecular weight of the i-th component, and ¢ — the density of the medium;
the sum of all the x; is unity:

Dx=1
7

The theory of Rayleigh scattering by a system of the kind described, when
in normal conditions, can be fully accounted for by the methods of classical electro-
dynamics and statistical mechanics. Thus, we consider the system in the electric
field E of an incident light beam of wavelength A. The intensity component of the
light scattered by the volume F and passing through the analyzing Nicol prism at
the point of observation is, quite generally, given by (see, Kielich, 1960):

'=1—6—7—tf<MM*n ng> 2.9
n T R 8"a"p/E> (2.2)
wherein R is the distance of the point of observation from the centre of the scattering
volume V, ® — the unit vector perpendicular to the direction of observation (Ry*n = 0)
and describing the plane of vibrations of the Nicol prism, whilst ¢ and 8 are summation
indexes assuming the values 1, 2, 3; the asterisk denotes the complex-conjugate
quantity. '

M = M(z, E) is the dipole moment induced in volume ¥ by the electric field E
of the incident light beam, when the configuration of the system is 7. In the classical
treatment, the configurational variables 7 = (¥, w) are continuous, and account for
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the positions (r) and orientations (w) of all molecules in the system. For a multi-
-component system, we have

x,N
M (T, E) = Z Z m(P;") ets rél’) (23)
Tod =1

with m®" denoting the electric dipole moment induced by the electric field E of the
incident light wave in the p-th molecule of species i, 1'5?) its radius vector, and, for
Rayleigh scattering,

8| =k—FK| = 4—; sin %, 24
k and K’ being the wave vectors of the. incident and scattered light, respectively, and
9 — the angle of scattering as subtended by the directions of propagation of the
incident and scattered light waves.

The symbol { >z in eq. (2.2) denotes the statistical average in the presence
of the electric field E of the incident light wave. Let U{(z, E) denote the total potential
energy of the system in the configuration 7 and when the external field is E. By clas-
sical statistical mechanics, the average statistical value of an arbitrary function of state
@(7, E) at thermodynamical equilibrium of the system is given by:

U(z,E}
[o@B) T3 dr
UG,E) ?

f e kT dr

where the integrations with respect to 7 are over all configurations of all the molecules
of the system, % is Boltzmann’s constant, and T' — the absolute temperature.

Restricting the problem to linear dependence of M(z, E) on the electric field
strength K, we have

(D5 — 25)

oM,
M, (z,E) = (9 E:)E=o Ey; (2.6)

accordingly, eq. (2.2) assumes the form

I, =

16741, /OM, (o M,\* N
MRT \JE, \9E,| MM,/ @7)

where /, is the incident light intensity, and € — a unit vector having the direction of
the electric field E. Here, the brackets { > with no index symbolize the average
statistical value in the absence of the electric field (E = 0):

U (z,0)

[@@o)e 5 do
U (,0) ;
fe_ T dt

2.8)

(@) =
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U(z, 0) is the total potential energy of the system when the configuration is v and
E=0.

When the electric field E is absent, the probability for all directions of the unit
vectors % and e is the same; thus, the product ngnge, e, of their components can
be averaged isotropically, and eq. (2.7) yields

16 nt I,

L= 452*R2

2 9 {5 cos? 2., Fis (s) + (cos® Q.n + 3) Fanis (5)} 2.9y

with £, denoting the angle between the vectors € and . The quantities F;; and Fy;,
. in eq. (2.9) are of the form

N 4N . (p0) (@) * '
Img" [Imy . r(”“)>
R =3 Coave 3, 500 (35) o>, ew
N 4N (p,i) 1o%))
dm, om (p9)
Fanis (5) = E : /(3 Oay Ops — 5«;?59»6) E E QEZ"’_’.) (512';”—’”) e~is: "uq> (2.11)

5]

and are termed the molecular factors of isotropic and anisotropic light scattering,
respectively; 7{29 = r{0—»{® is the vector connecting the centres of the p-thand ¢-th
molecules of the i-th and j-th chemical species and 8,5 — the substitution tensor
(unity if & == 8 and zero when a 7= f).

Eq. (2.9), together with (2.10) and (2.11), is the fundamental equation of the
statistical-molecular theory of light scattering by a multi-component system.

If natural light is used and the light scattered is observed with a Nicol analyzer,
we have (see Kielich, 1960):

16 n I,

I(pn, ) = ———]
(nr 9) 454 R}

{5(1 — sin2 gy sin2 @) Fyq (s) + (7 — sin? @, sin? &) Fanis (5)}»
2.12)

where ¢, is the azimuth of the unit vector m, and © — the angle of scattering.
If no Nicol prism is used, eq. (2.12) yields the following expression for the light
intensity scattered at the angle &

8atly

YRy {5 (I + cos? ) Fa (s) & (13 + cos? &) Funis (5)}.  (2.13)

1) =
The degree of depolarization is defined as the ratio of the smallest and largest
possible values of the intensity of the light scattered. As I, = I(90°, 9) and [, =
= I(0°, &), by eq. (2.12) the general expression for the degree of depolarization
of the light scattered at the angle # is obtained in the form

5cos2 @ Fis(s) + (6 + cos? &) Fonis (s)
5 F;;s (S) —+ 7 Fanis (S)

D (9) = (2.14)
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The light scattering constant, also known as Rayleigh’s ratio, is defined as the
ratio of the intensity of light scattered by unit volume at angle 9, to the incident
intensity:

I1(9) R

SO) =~

2.15)

As the incident intensity existing within a medium of refractive index  is related
to I by the formula

3 \2
the following expression is obtained from (2.15) with respect to eq. (2.13):
4 (2 2
S(9) = 8"40(; z;% {5(1+ c0s? 8) Fiy(s) -+ (13 + cos? 8) Fuass (5)}.  (2.17)

If the light scattered is observed perpendicularly to the direction of incidence,
egs. (2.14) and (2.17) yield:

6Fanis

T Ay 218)
__ 87t (n? 4 2)2 . ‘
S = 2 it (5 By + 13 Fa). 2.19)

Integrating S(##), as given by eq. (2.17), over the surface of the scattering sphere,
the following general expression is obtained for the turbidity:

5 2 2
b= ?%%}VQ f {51+ cos? ) Fiy (5) + (13 -+ cos? 9) Funis (5)}sin 840, (2.20)
0

or, in the absence of internal interferences:

12825 (n? + 2)?2

h= 243127 (Fis + 2 Fanis)- (2'21)

In the subsequent sections, the factors F and F,_ . will be discussed for several

anis
molecular models,

3. Anisotropic molecules with constant polarizability

In the first approximation, the polarizability of the molecules immersed in the
medium may be assumed to remain unaffected by the surroundings, and thus to be
that of the isolated molecules. In this case, if the molecules of each species present
within the system under consideration are optically anisotropic, we have

m;p,z) — “273,0 Egp,t)’ (3.1)
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with &% denotirig the polarizability tensor of the p-th isolated molecule of species i.
Hence, the molecular factors (2.10) and (2.11) assume the form

xN N
(S) — Z <Z Z a(P)t) a(‘l;]) cos 8§ ,r(pq)> (3.2)
5 g=1g=1
*iN %N ) .
F (s = Z <Z Z 3 a(P,z) a(q,f) “g:;) “(;é])) CoS S * r§p4)>' (3.3)

i,j p=1g=1

Assuming all molecules of one species to possess the same polarizability, and
applying the Kirkwood-Buff (1951) method, the molecular factor of isotropic light
scattering may be written as follows:

Fs(s):9NZ %y ac(]-){x‘ 0 + x; xfcoss r; [gij ) —:/;—:Id%}, (3.4)

1

with &, denoting the mean polarizability of the isolated molecule of species i, and
g;, (z) — the distribution function of the correlation between the molecules of species
i and j; Q%dv = d r;; dw; dw;, where 2 = fdw

The molecular factor of amsotroplc light scattering (3.3) will now be represented
in a form better adapted to further discussion, namely:

xiN %N

Fo()=1% Z af) o ) 19> Z (3 s WPFD— 8,5 8,,) cos S 22y, (3.5)
0] p=1 g=1
with w{?%% denoting the cosine of the angle subtended by the axes of the molecular
systems of reference rigidly attached to the p-th and g-th molecules of species i and j,
respectively.
For molecules possessing the axial symmetry, this yields

Fopis (5) = 9 N 2] 05 (55 Oaiy Ouiiy {xi T

)
L 2 N1z 3.6
—{—Ex,-xj (3 cos 20;; — 1) cos 8 - 1;; gij(r)-_f T{. (3.6)

Here, @, is the angle between the axes of symmetry of the molecules of species
i and j, respectlvely, and ,;, — the optical anisotropy of the isolated molecule of
species i:
() @) (i) B

R Ml A N §
Oatiy = 3ag 2T 50’ (3.7)

o, and « denoting the polarizabilities parallel and perpendicularly to the symmetry
axis of the molecule, respectively.
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Egs. (3.4) and (3.6) can be rewritten as follows:
Fiy(s) = 9N X af aff oy ey Cllkar 3.8)
iy
ams( ) =9N Z xV, x %, % 63(1) 6¢(J) ang)ular’ (3'9)
5 ,

with the notation

. N -
Cin | = x,."*_ch‘% ;i + %P x}/’fcoss X [g,-j (r) — 7] dT, (3.10)

angular

CED e = 2P 2% 8 + %—x:/’ xf j (3cos26,;— 1) coss" [gu (r) — N] drz,
(3.11)

CEy and CEP . are quantities accounting for the radial and angular intermolecular
correlations.
If, in partlcular, a two-component system is cons1dered this yields

N| .-
9N Fi(s) = % a3 {1 + %, fcoss-rn[gu (r) — V] dt} +

N| -
+ 2.2 23 @) %) fcos 8Ty [gm (v) — T,—‘:l dr +
2 N}t _
-+ 2y (2 {1 + x5 f COS S * Ty, |:g22 () — 7] dt}, (3.12)
1 2 2 1 9 N .-
oN Fanis (5) = 21 &(1) Oaxry ) 1 + D! (8cos2Oy; — 1) coss Ty | g1y (7) 7 drg +
9 N
+ %1 % &1y %, Oaty Oz, | (B c0s® O1p— 1) cos S - Ty | &35 (7) — V7 di +

1 N _
+ % 0i(a) Oy {1 + 5 f(3 cos? @yy — 1) cos S * Ty [g22 (7) — 7] dr}. (3.13)

Hence, for a dilute -two-component solution, and for 4> r;, the expression
given by Benoit and Weill (1956) for the optical anisotropy 42 = F,, /F, is derived,
whereas, for a one-component system, the expression discussed by Benoit and Stock-
mayer (1956) is obtained (cf. Anselm 1947; Buckingham and Stephen 1957; Kielich
1958).

In the case of an ideal gas the radial and angular correlation factors (3.10) and
(3.11) reduce to .

CED e = 515 276, ‘ (3.14)

ij° angular — 7’

4N __x'/z ‘/2(3,

radial
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and eqgs. (3.8) and (3.9) yield
sasts 9N Z % “(z) Z X Fx(.:)’ (3-15) '

gas anis =9N Z X; “(1) z(:) - Z X Fal(x"nxs (3'16).

Thus, for an ideal gas, the molecular factors Fy, and F, result additively from
the factors

FP=9Nak and F$, =9Nal s, (3.17)

anis

of the components of the multi-component system. This means that the various
components of a gaseous system scatter light independently of one another.

4. Molecules with permanent dipole moment and hyperpolarizability

In their theory of the degree of depolarization, Buckingham and Stephen (1957)
proved that in the case of a one-component dipolar liquid, the light scattered is largely
dependent on the hyperporalizability of the molecules. Here, the method of the
foregoing authors will be applied for computing the molecular factors Fyand F,_,
of a multi-component system.

In a condensed medium, the polarizability of a molecule is generally modified
by the molecular field of its neighbours. In the case under consideration, the dipole
moment induced by the total electric field (E-+ F) in the p-th polar molecule of species
¢ immersed in the medium is given by the expansion
m?ﬁ) = a;%,i) ( Efgp,i) + F(p,i)) + 1 g ( E(p,j) -+ F(p,i)) ( E<p,i> + F(P,i)) + .. 4.1

afy

wherein ﬁ("") is the hyperpolarizability tensor of the p-th molecule of species i, whereas
F®? is the molecular field at the centre of molecule p of species i due to the charge
distribution of all the others.

Substitution of the expansion (4.1) in eqs. (2.10) and (2.11) yields

xtN N
F ()= Z <le Z (@@ af) + ol pR, FD 4
W] a=
+ ol B, FO 4 ..)coss- rpoy, (4.2)
%N XjN p .
Fass ) =1 53 33 (508 + A0 FD +
i p=1g=1

aly ﬁ(y’ge FD 1 ..)(3 ws il wB% i _ Ogp 0,4) COS S * 1‘3’-”). (4.3)

d .
The terms a,, a—gﬁ have been omitted herein; these are discussed in Appendix A,
(1

for the case of a one-component system.
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In the Onsager model (1936), the molecular field F® appearing in the foregoing
expressions is the reaction field in the absence of an external field. The Onsager
model was applied by Piekara (1950) to the theory of molecular orientation phenomena
in two-component solutions of liquids consisting of anisotropic molecules. In the
present case, the reaction field existing at the centre of a molecule of species 7, of
radius a,, is given as follows:

2(e—1) ma’

@)
Dol ap Sime (44

FP =Ry =

wherein ¢ is the electric permittivity of the medium as a whole. In the case of dipolar
molecules of anisotropic polarizability we have, at E = 0,

(;) — lu(z) e “(1) F(z) 4.5)
and eq. (4.4) yields
) fz (z) @ :“u
Fy = 1— f, /,) = Ya a;,) (46)

wherein & is the component of the permanent electric dipole moment of an isolated
molecule of species i and & — its polarizability referred to the principal axes. As-
suming, according to Onsager,

_nm—1
%) = ni -+ 2 ag, (47)

the quantity ¥ in eq. (4.6) can be written as follows:

/9 = fizwy 2(e—1) (n}—1) '
Tl fiawd® Qe (2+2—2(—1) (nF—1)iP°

4.8)

where n, is the refractive index of the i-th component of the system, and K= o@D
For molecules of isotropic polarizability, 4% = 1, whence eq. (4.8) reduces to

w_o_,o_2e=1) @1 49

W= =0 =T e (4-9)

By eq. (4.6), with eqs. (4.2) and (4.3), the following result is obtained for mole-
cules whose polarizability has been referred to the principal axes:

xN x N

F (s) = Z Z A(”)<Z Z cos § * 1'(1"1)> (4.10)

iJ a, 8=1

2N xjN

Fnis () =% 25 Z AN 2 (3 wE D@D — 1) cos 8- 12y,  (4.11)

i,j @ =1 p=1 g=1
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with the notation

A(U/ “‘('i) “(J) + Z ( \t)ﬂ(]v xg']) luy (])ﬂ(l) (i) Z')’ ) N (4‘.12)
O]

For light scattering by molecules possessing the axial symmetry, the foregoing
expressions yield

Fxs (S) = 9N Z xl 03y A (5) {1 + Y40 m ﬂ(‘) "I“ M(J) ﬂ(J) + .. } i;{:l)ial’
i (t) (1)

4.13)

1 1 6 {3

Fonis(s) = 9N Z ¢ 5 ® 03> () Oty Oati) {1 + 6 #a) By Osaiy 4
ij “(s)au(:)
B Oars "
TN LG } Codatar (4.14)
: %75) Oals)
with y = 29; ‘

Oacny = Lﬁ d (1) 249 - 4.15
b» = " 3p an ﬁ<,>~3(ﬁ +281) (4.15)

are the anisotropy and the mean hyperpolarizability of the dipole molecule.

Thus, the effect of the hyperpolarizability and permanent electric dipoles of the
molecules on light scattering by a multi-component system has been accounted for.
If, in particular, the scattering medium is a one-component system, the expressions
derived by Buckingham and Stephen (1957)1) are obtained from eqs. (4.13) and (4.14)
by neglecting the angular correlations and internal interferences:

Fi, — 942 lvf {1 -2y /;—f} RTpr, (4.16)
Funis = 9020 N{l 4ot 2”} 4.17)

with R denoting the gas constant, f., — the isothermal compressibility coefficient
of the medium, and, for 4; =~ 1, y given by

:2(6—-].) (nz-—l).

3(2¢ + n? (4.18)

1) Buckingham and Stephen (1957) computed the quantiﬁes A and B standing in connection with
eqs. (4.16) and (4.17) at

3 3
Fiy=— NB, Fpq =

is 10 anis ”'2— NA.
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.

5. Non-dipolar molecules with quadrupole moments and hyperpolarizability

Let us now consider a multi-component system of non-dipolar molecules with
hyperpolarizability. In the present case, the following expansion can be written:

m;p,i) = {a‘(‘)b,i) + %728’12 (Eﬁ,”‘.) + F;P"')) (Ef,"”‘) + F‘(,p,i)) + ...}(E;{”") + F‘(’p,i))’
5.1)
wherein y%9 is the hyperpolarizability tensor of the p-th (non-dipolar) molecule
of species .
By eq. (5.1), the molecular factors of ‘isotropic and anisotropic light scattering
assume the form

xN xN ) .
F,(s) = Z]: <ﬁZ:1 Z {“(.) a(’) “(:) 7/I(slﬁ)w F;J) F‘g’) + (5.2)
Hhi p=1 g=1

+ 302y, FPFP + ..} cos 8- 180,
Fonis(8) = % 2 <2 Z {0 ol + 3 aQ Y, FOFD + (5.3)
i, p=1 g=1
+3a@Dy® FOFD 4 ..} (3 o@D ofsi — 8,58,5) cos 8 - 180 .

yden

As previously, the molecular field F¢ can be replaced by the reaction field of
Onsager’s model. If, moreover, the molecule possesses an electric quadrupole moment.
the reaction field at its centre is given by (see Appendix B)

Fﬁ") —-fm(‘\ + h, @f,‘g Tigo (5.4)
wherein

f__2(e—1)_1_ b _6(—1) 1
T2 +1 ad’ YT 3e+2 ab’

15.5)

04 denotes the electric quadrupole moment of a molecule of species i, defined as
follows:

O =3 26" B ry — 1k 8,5) (5.6)
n

where €™ is the n-th electric charge of a molecule of species i, and 74" — its radius
vector, summation extending over all the charges of the molecule.

The reaction field of a permanent quadrupole induces a dipole moment in a non-
-polar molecule (the induced quadrupole moment will be neglected):

m® = af) FP: (5.7)
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thus, eq. (5.4) yields

; 0% r
Fg)z Q(t) E(z) u;i z(f, .8)
]'_f' 5
wherein
@_ Mmoo _g(2et] nf —1\* o
é f; o) Xa 3(38+2)(n?+2 Xa - (59)
With the definition (see Béttcher, 1952)
ai w 2n
s N . .
TP =2 f f [ FO FS 72 dr,sin 9, b dg,
00

and with respect to eq. (5.8). the mean square value of the reaction field is obtained

as follows:

G () 1 n? + 2 i i i i
FO R = A (_2:_1) £ & 6 64, (5.10)
@\
For molecules having the axial symmetry, this yields
2
DD _ 0. 00
Fg' Fy —977“%, (5.11)
wherein
1 [2e+ 1\ [n2—1\* | ;
6= 15 (38 - 2) (n?+ 5 (P + 248 (5.12)

and @, is the quadrupole moment of the axially symmetric molecule,
O, = Z em (22, — a2

z,, being the distance along the molecular axis of the charge ¢ and x,, —its distance

from the axis.
With respect to eq. (5.11), eqs. (5.2) and (5.3) assume the form

Fy (S) =9N Z xl/le/za(’)“(’) {1 + = 5 N 7(1)@(1) +
i
5 02 .
+ 5 10 y(a’:%l/g‘” + } Cldas (5.13)
) 8y OF
Fanis(5) = 9N Z af 2 iy 9y Oati) Oat) {1 + o e LOHO0
2% &) 6«(1)
76 Ovtid O )
+ 70 e } Cangular (5.14)
(1) Ou(s)
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which holds for axially symmetric molecules. Here, the quantities

e 1 ( @) 4 2 @

By = g o 7073 " +2v9). (5.15)
have been introduced, being the anisotropy of hyperpolarizability of the quadrupole
molecule and its mean hyperpolarizability, respectively.

" Thus, the effect of the hyperpolarizability and of the permanent quadrupole

moments of the molecules on light scattering has been computed.

In the case of a one-component system, and neglecting the internal interferences,

we have, by eqs. (5.13) and (5.14),

2
Fy=9a? N{1+5n”f?,, + ...}RTﬂT, (5.16)
Fonis = 9a282N {1 + L 7 Vf/ 6@ + ,,,}Cmgu,a,, (5.17)
where
1 f2e+ 1\ (n2—1\" , »
10 (3 P 2) (nz x 2) F + 2 x3), (5.18)
and
) 1 ) Nl
Canguiee = 1 + 5 f (3 cos? & — 1) [g(‘r) — -V—] dx. (5.19)

is the angular correlation factor (cf. Anselm 1947, Benoit and Stockmayer 1956,
Kielich 1960).

6. Relation between anisotropic light scattering and the effect of optico-optical
birefringence in an isotropic medium

From the discussion of sections 3—5, the molecular factors of isotropic and
anisotropic light scattering are seen generally to contain certain molecular constants
accounting for the electro-optical properties of isolated molecules, such as the polariza-
bility &, hyperpolarizabilities 8 and y, and permanent dipole y or quadrupole ©
moment. The factor F,, is, moreover, dependent on the radial intermolecular cor-
relations, whereas F,; depends on the angular intermolecular correlations. For the
greater part, the values of these molecular parameters are not known, and so the
factors F,, and F,; are more conveniently expressed by quantities that are accessible
to measurement.

Eq. (2.18) defining the degree of depolarization can be used for eliminating

the factor F;; from eq. (2.19), which is that of the scattering constant; this vields

82t (n2 +2)26+ 6D

5= 814V 5D

Fanis - (6.1)
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In considering light scattering by a multi-component system, it is convenient
to introduce the molecular light scattering constant St

oV

= (n® ¥ 2)2
by eq. (6.1), the latter may be rewritten as follows:

_ 876 +6D
924 5D
A relation between anisoiropic light scattering on the one hand, and the optical
birefringence arising in an isotropic medium from the effect of a very intense light
beam on the other, will now be derived. This latter effect was theoretically predicted
by Buckingham (1956) and, as far as the present author is aware, has not been expe-
rimentally detected as yet. Generalizing Buckingham’s theory for multi-component
systems, the molecular constant of optico-optical birefringence is obtained in the form

N N
o 2w SN B mp
By = 22 (3 0y Os0— dasby) {Z \; 5E,9E 95,

Sm S; - (6.2)

S, Fanis. (6.3)

XN xIN

1 / OmiPH omie’ )\}
+a7 5 <D, 9B, 9B, /|’

i =1 ¢=1

(6.4)

In deriving this expression it had been assumed that the frequency of the weak
measuring light beam is identical with, or differs but little from that of the intense
light beam giving rise to the optical birefringence of the medium. In this case, the
molecular constant BY and the constant measured

_n—ng 1
B"———~n = (6.5)
are related as follows:

0 54 n?

" T

VB, . (6.6)

with E2 denoting the time mean square of E.

In particular, neglecting the effect of the molecular field, the dipole moment
induced in the p-th molecule of species i by the electric field E of the light wave
can be expressed by the expansion (cf. Buckingham and Pople, 1955)

meh? = alfd By + 4 650 By By 4+ Ly B3 By B, By + .. (6.7)
by eq. (6.4), this yields
2aN G 1 / & ; N\
Bo="35 {2 D wivid + g ) woad \Z, (8 e Wi — 8,36,0) /}.
p=

1 1
’ : 6.8)
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Neglecting herein the term accounting for the hyperpolarizability y, the following
expression is obtained for molecules presenting the axial symmetry:

4N
By = SIT 2 "0%0 Oai) Oags) {%: 0if +
1,7
+ 1x, x,f (3 cos2@;; — 1) g;; () dt}s - {6.9)

for a one-component system, the latter expression becomes identical with the one
derived by Buckingham (1956)?).

In the case of scattering molecules whose linear dimensions are small as com-
pared to the light wavelength 4, the molecular factor of anisotropic light scattering
as given by eq. (2.11) assumes the form

! SO IamlPD omfeON
Fanis = 5 (3 Oay 095 — Oap Oy0) 2; \pz GZ 5B, 08, /" (6.10)

If, on the other hand, the first term relatmg to the hyperpolarizability of the
molecules be omitted in the general expression (6.4) for B, we have, by eq. (6.10).

45 kT

- B, (6.11)

F, anis —
Eq. (6.11) relates the molecular factor of anisotropic light scattering and the molecular
constant of optico-optical birefringence, and holds for an isotropic medium of arbit-
rary density.
With respect to eq. (6.11), the molecular constant of light scattering (6.3) is now
given by ’

1273 1 + D 0
) TR .1
S = - kT D B, (6.12)
By eqs. (6.2) and (6.6), the latter relation can now be expressed in constants

that are accessible to measurement:

7273 n? kT(1 + D) B
A(n% + 22D

S = (6.13)

The foregoing relations contain no molecular quantities explicitly, and hence
can be conveniently subjected to direct experimental checking. If the values of S
and D are known experimentally, eq. (6.13) yields that of the optico-optical birefrin-
gence constant BP, On the other hand, for non-polar substances, B® can be expressed
by Kerr’s constant K:

0 r2—1) (n® +2)
B = D) ETD K. (6.14)

2) The quantity L computed by Buckingham (1956) differs from BY, by the factor 1/9, i.e. BY =9L.
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7. Relation between light scattering and molecular refraction

From egs. (2.18) and (2.19), we have the following relation:

g _ 870+ 2?64 6D

BIAV 66— 7D ™ @b
wherein (6+6D)/(6—7D) is the Cabannes factor (1929). In the foregoing relation,
the factor Fi; is the only quantity to contain molecular parameters. It will now be
proved that the molecular factor of isotropic light scattering Fj, can be expressed
in terms of the molecular refraction of the medium

nt—1

Rm=‘mV.

(7.2)

For a multi-component condensed system, the molecular theory yields the
following general expression for R, :

_Ax /Qm;“
Rm—gNZ X 9L, /" (7.3)

Hence, with the models discussed in sections 4 and 5, the following relations are
derived for dipole molecules:

dn z : 1B }
= X 30y F ey EREE A L8 7.4
Ry=-5N i {() 10 P, (7.4)
and, for quadrupole molecules:
A j : .5 }/m@?i)
Rm - ? N i xl {“(1) 'l' 2 7](1) “zg + AP A (7.5)/

From these relations it is seen that the molecular refraction of a condensed
system and the factor of isotropic light scattering given by eq. (4.13) or (5.13) are
expressed in terms of the same molecular quantities.

Now, restricting the problem, for simplicity, to that of a one-component system,
we obtain by egs. (7.4) and (7.5)

Ry — gasl up
tm  eastm | OF 7.6
R, ok (7.6)
Ry~ gasRw 5 yO? )
im _ ga = 7.7
gasRm 2 alllﬂ ( )
wherein
gasRm = 4% Na (7.8)

denotes the molecular refraction of an ideal gas.
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The foregoing expression together with the factor F,, as given by eq. (4.16)
or (5.16) yield the required relationship:

81 | R, — gasRom s RTBr
Fu= ¢ — l1 +2 (—gaT)}mRm N7 (7.9)

which holds for either of the models under consideration.
By eq. (7.9), the scattering constant of eq (7.1) can be represented by the follow-
ing formula:

S =

24NV?2 6 —

gas-tm

2 (n2 2
7% (n? 1+ 2)2 6 1+ 6D {1 42 (R SLSE_)} gusfmRTr,  (7.10)

which contains no molecular quantities explicitly.
Similarly, by eq. (7.9) and the relation between F, , and the anisotropic term
in Kerr’s constant,

121502 (n2— 1) KTV
2x(e— 1) (e +2)(n®+2)°

Fanis = Kanisa (711)

we have, with respect to eq. (2.18):
— 2 (n2 2 K
ﬂT {1 +2 R — gasRm - 24m n? (n 1) V2 Kanis - (7.12)
6— 7D gasFm (e —1)(e + 2)(n? + 2)3 s R2,

The term (R,, — ;R,,)/gasR,, in the latter equation accounts for the effect of the
molecular field on light scattering by a condensed medium. More exactly, terms of the

, ..., accounting for the anisotropy of the molecular field, have bheen

dF,
type of —%
ype of 55
neglected in the computation of F; and F,, in sections 4 and 5. In the first

anis
approximation, identical terms will appear in the expression for the molecular
refraction R,. Divergences will arise only in higher order approximations, but,
as these additional contributions dre extremely small, they may well be neglected.
Hence, the expressions of (7.10) and (7.12) still remain valid if the effect of anisotropy
of the molecular field on light scattering is taken into account. In the present case,
however, the following term due to anisotropy of the molecular field should be added
to the expressions of eqs. (7.6) and (7.7), which account for the difference between

the molecular refraction of a substance and that of the perfect gas:

3 .
Rm - gasR:;,' 1 / 1
(_ga:ﬁ_)ams 3 {.)E / Z Aa Yo (7.13)

«=
wherein, for Onsager’s model, we have (see Appendix A)

2(n® — 1) (e — 1)

Ve= B D + 29— 2 (n2— 1)° T (7.14)
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For isotropically polarizable molecules A, = a, /@ = 1, and so the contribution
resulting from anisotropy of the molecular field vanishes, i. e. ¢, = 0.

Neglecting fluctuations of the molecular field and fluctuations of its anisotropy,
we have
n?—1
EID V:

Ry = gasRm = (7.15)

hence, eq. (7.10) yields the well-known Cabannes-King-Rocard formula (see Caban-
nes, 1929):

@ (— 1264 6D

S = AN 67D RTBr, ‘ (7.16}
whereas eq. (7.12) reduces to Gans’ (1923) relation:
ﬂT D 247 n2 Ksnis

6— 17D = (n? — 1)(e— D(n2 + 2)(¢ + 2) . (7.17)y

In considering a condensed medium consisting of spherical molecules, eq. (7.9)
should be replaced by -

Fy=9a®N {R:'I;ﬂT +2 (—*R"' — “‘“R’")}, (7.18)

gaslim

herein, we have approximately (cf. Buckingham and Stephen, 1957)

Ry—gusRm _ 1 JOFaN_ _ o 5 [ .6
3 \E, =24 f’ gdr + ..., (119

gas-Rm

g (r) being the radial distribution function.
Buckingham and Stephen (1957) proved that, in the case under consideration,
the factor of anisotropic light scattering can also be approximated by the quantity

of eq. (7.19):

9 R, — m
Fanisr= 5 “2 N (TRE:S“R“) . (7.20)

By substituting (7.18) and (7.20) in egs. (2.18) and (2.19), the degree of depolarization?)

%) Eq. (7.21) for the degree of depolarization D differs from Buckingham and Stephen’s (1957)
formula by the larger numerical coefficient (27 as against 7) of the second term in the denominator.
The difference arises from the fact that Buckingham and Stephen neglected the effect of the
molecular field on isotropic light scattering.: If the term due to fluctuations of the molecular field is
numerically negligible with respect to the one accounting for fluctuations of the density, ie. if

R — R RT ’ ‘
i ;as << IfT’ eq. (7.21) reduces to

gasilm
3 [R, — ol V 6aV
D= _—_ ( m__ 8as "‘) e fr“"g(r) dr.
5\ wwR» | RIByr 5RIpr
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and Rayleigh’s ratio are obtained as follows:

6 ( Rm - gasRm)
D= gasR

10 RT’gT + 27 (—R ——*‘“R"’)

(7.21)

gas-im

2 (2 2
5" (n% 4 2) {IORTﬂT+33(R — gasPm

20 14 NV )} gaerzn (722)

gastim

The foregoing expressions hold for condensed substances consisting of spherical
molecules. For the ideal gas, D = 0, whereas eq. (7.22) reduces to Rayleigh’s (1899)
well-known formula

a2 (n? — 1)2 y_ 2% (n— 1)2

S="9unN T TMN

V. (7.23)
Finally, as Kerr’s constant Tor a condensed medium of spherical molecules is given
by

n(n? + 22 (e 22N 81 gasP%:  [Ru— gasRom }
315 77 7 U T3 s ey ) A G

we have, by eq. (7.21),

2n(n2—i—2)2(8+2)2N{ 27gasPr2nl3TD }
24302V 162NV (2—9D)|’

K=

K:

(7.25)

wherein ., P, = 47/3 Na, denotes the molecular electric polarisation of a gas con-
sisting of spherical molecules of polarizability «,.

If, for a given substance, Kerr’s constant K and the degree of depolarisation” D
are known experimentally, eq. (7.25) yields the mean hyperpolarizability o of a spher-
ical molecule.

8. Discussion and conclusions

The formulas derived previously will now be applied to the aim of computing
the hyperpolarizability of the carbon disulphide molecule. In the present case, we have
the following numerical data: at ¢ == 20°C, n = 1.636, ¢ = 2.26, S = 92x 10712
CGS, D = 0.62 (Weill, 1958), and K = 12.1x 10712 e, s, u. (Stuart and Volkmann,
1933); by eq. (7.12), this yields

Rm - gasRm
g{‘.S'Rm

By comparison with eqs. (7.) and (7.13) we have
3

1 ~ @
Zz,,% 5 n = 0.097,

a=1

= 0.097.
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and hence, for & = 8.77x 10~ cm?® and the value of = 0.007 as computed by
3
eq. (5.18) and § >} 1, v, = 0.084, we obtain

a=1

y6? = 20.8x 10,

On. the other hand, the quadrupole moment of the CS, molecule can be computed
numerically from the Debye formula (1920) for the constant @ in the Van der Waals
equation:

a (2
_szs_,

wherein d is the diameter of the molecule. Since, for CS,, a = 11.3x 1012 dyne
cm? and d = 3.86 A, Debye’s formula yields
O =28x10"%e. s u.

With the quadrupole moment as computed above, the mean hyperpolarizability of
the CS, molecule is

y=26x10"%¢. s u.

Measurements by Blaker, Badger and Gilman (1949) of the constant of light
scattering in CS, yield a value of S = 151108 cmil, (1 = 4358 A, t = 25°C);
thus, by eq. (7.10), we have

Rm - gasR

gas-'m

* = 0.265.

On the other hand, with egs. (7.7), (7.13) and the numerical values used above, this
yields y = 36.5x10-3, a value almost 14 times larger than that previously computed
from eq. (7.12).

The quadrupole moment of the CS molecule as evaluated above is certainly
exaggerated. If a value of @ = 6 X102 e. s. u. is assumed in place of @ = 28x 1028
e. s. U., eq. (7.12) yields y = 56.5x 10736 e. s, u. (instead of 2.6 X 10-% ¢, s, u.), which
is a value not far remote from that of y = 54.4x 103 e. s. u. computed by Buckingham
and Raab (1957) from Kerr’s constant.

For CCl, at ¢ = 20°C, we have § = 105x10712 cgs, a = 10.5x 10~* cm3,
n = 1461, ¢ =224, D = 0.06 (Krishnan, 1925), K = 31.4 x 10~ e. s. u. (Stuart
and Volkmann, 1933); hence, eq. (7.25) yields a value of y = 4.7x10"% e. s. u.
for the mean hyperpolarizability of the CC1, molecule. Buckingham and Pople (1955)
computed the mean hyperpolarizability of the CH, molecule from the molecular
Kerr constant of the gas, obtaining a value of y = 2.6X10 ¥ e. s. u.

From the discussion of the foregoing examples it is seen that parallel theoretical
and experimental investigation of light scattering in liquids can lead to the numerical
evaluation of the hyperpolarizability of the molecules or of their quadrupole moments.
The foregoing molecular theory of light scattering proves that investigation of light
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scattering in multi-component systems can provide equally interesting information
on the electro-optical properties of molecules of various kinds and on the nature
of the forces with which they interact.

It results from the present paper that, in a multi-component system, in addition
to light scattering on fluctuactions of the density and concentration and on those
of the anisotropy and orientation of the molecules, an essential part is played by light
scattering on fluctuations of the anisotropy of the molecular field and by scattering
related to higher order effects such as hyperpolarizability of the dipoles or polariza-
bility of the molecular quadrupoles.
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Appendix A. The Effect of Molecular Field Anisotropy on Light Scatiering
in Liquids
The terms omitted in the computations of sections 4 and 5 and relating to ani-

sotropy of the molecular field will now be considered. The expansion of eq. (4.1)
or (5.1), if higher order terms are neglected, yields

am(ap,l) (p ) ( )QF(PM)
D o oy + s (A1)
9E, O,
whence egs. (2.10) and (2.11) assume the form
N XN ') @
' (s) = / @ gl OFy o 5
Fu (9) = Z \; Zl {oz” W+ adel) S el S+
OF® 9F
+ “(z) “({s) {-)E(’) é)E(f) + . } cos § '1‘5?“)>, (A.2)
“yN N 6 )
oF, oF;
ams (S) = Z /Z Z‘ {“(l) a(]) + “S]é ag’{’) 9 (]) + (]) t(zls) aE(l) +

I
Q)] ©)]
+ o gl == 9F QF’/
ae 717 aE(t) E(l)

) F(z)
The quantities z— SED herein account for the anisotropy of the molecular field

I Y} N
-+ } (3 wf,,‘;,q’”)w,%%q’“) - 60;13 6,,,3) Ccos S - 7'1(']1"4 > .

and are readily computed from Onsager’s (1936) model. Namely, we have

F® = y® F®, (A.3)
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wherein \
o 9nd(t 42— (2 [E@n?+ 1) (oF +2) —2 (2 — Di(nf — 1) A7)
Yo T (42 [@2n?+ 1) (0] +2)— 2 (02— 1) (nF — 1) A7)

(A4)

is the parameter of the molecular field anisotropy. For a one-component system
n; = n, and eq. (A.4) reduces to (7.14), whilst eq. (A.3) yields the expression (7.13)
for molecular refraction.

Restricting the problem, for simplicity, to the case of a one-component system,
and neglecting short range angular correlations, we have, by eq. (A.3),

3

3
2 1 N
F = 9a? {1 5 Y detet g Y, A,Aﬁwp,,} 7 RTBz,

a=1 a,f=1
2 ‘ 3 3 3 3
Fanis = %{32 P ) et 2 (3212%— ) A,Apzpﬁ) +
a=1 @, f=1 a=1 @ f=1
3 3
WY z,aﬁ%w} N, (A.5)
=1 e, f=1

wherein vy, is given by eq. (7.14).
For molecules possessing the axial symmetry, the foregoing expressions reduce to

Fiy=9a® {1 + 5 Guyn + 211.%)} 7 RTpr,

2
Fonis = 90202 {1 y (A= Ay } N, (A.6)
M—A4y

Cwith Ay =24, 4) =4 =2y and p =y, Y3 =Y = Ys-

The effect of fluctuations of the molecular field anisotropy on isotropic light
scattering (F,) in benzene amounts to no more than 3 %; the respective figure for
CS, attains, however, 18 %. Fluctuations of the molecular field anisotropy yield
a far greater contribution to anisotropic light scattering (F,p), one amounting to e. g.
28 9, in benzene, and to as much as 87 % in CS,.

Appendix B. On the Effect of the Molecular Polarizability Due to the Reaction
Field Gradient on Light Scattering

" The author is indebted to D A. D. Buckingham' for kindly directing his atten-
tion to the necessity, in the computations of Section 5, of accounting for the dipole
moment induced in the molecule by the gradient of the reaction field (cf. eq. (5.4)).
This involves the term containing the tensor B4, intervening in the effect of optical
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birefringence induced in the medium by the gradient of a constant external electric
field, as computed recently by Buckingham (1959).

For simplicity, only a one-component medium will be considered. With Buck-
ingham’s (1959) general expression for the total dipole moment, m{"” the total diffe-
rential polarizability of the molecule is obtained in the form

9P 1
(m )E — { @ 4 g8 FP 4 5 — B PP FP 4

JE,
1 QF(p)
Jr"ngﬁ):yéF%)‘*‘-": (‘sﬂx‘l‘ QE )

(B.1)

The tensor B, is symmetrical in the pairs of indices @f and 4, and accounts for the
additional polarization of the mélecule as induced by the field gradient F{ (") = JF (P)/Qr
A discussion of the relations between the components of the tensors in eq. (B.1),
for molecules having the spherlcal or axial symmetry, is to be found in the paper
by Buckingham (1959).

Substituting the expansion of eq. (B.1) in eqs. (2.10) and (2.11), and neglecting
short range angular correlations, the following expressions for non-dipolar molecules
are obtained:

2 = N
iy OCM;Bpﬁ;ya Fya + } 7 RTﬂT,

Fy = {“za“ﬁﬂ + Xaq Vopys ﬁf’ + 3

F, anis % {3 Xap Xep — “au‘aﬂﬂ + (3 Xap Vapys — %ga 7ﬂﬁ'yd) F y F, s 1 (B'2)
+ 3B p Bupys— Upy Bagya) Fyp + oo} V.

For molecules whose axis of symmetry is in the direction of the 3:axis, the fore-
going expressions reduce to

_ L .
Fiy=3a {80+ (Vases+ 2 V11a0) Fo Fy + ..} 3 RTfr,

Fonis = (“11 - “_1_) {“n — oy + (Vsaaﬁ_ Vllaﬁ) Fﬁﬂ +
'l_ % (333:119-_‘ Bll:uﬁ) Fuﬂ + } N. (B?’)

The former is identical with the one derived by Buckingham and Stephen (1957),
whilst the latter one differs therefrom by an additional term containing the tensor
Baﬂ:)'é'

The field F, and field gradient F,; are computed with respect to Onsager’s

(1936) model:
Fo=R,+ Ryrg+ ... (B.4)
wherein (cf. Onsager, 1936)
2(8 1) m,

R TET e ®
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is the reaction field, and (cf. Buckingham, 1959)

6(e—1) Oy

Rep = Bet+2 ob

=h O ‘ (B.6)
is the reaction field gradient inside a spherical cavity of radius @ in a continuous
medium of electric permittivity & due to a dipole and a quadrupole of, moments m,
and @,; at the center. '

Neglecting the quadrupole induced, eq. (B.4) yields, for anlsotroplcally polarized

polar molecules, .
_f h
Fu_-l—faclaﬂc_}_l——fal,,@"prﬂ’ . - (B.7)
whence ‘ .
. oF, h o
Fop = T, 1= fak Oup. (B.8)
S'ubstituting‘ the foregoing in eqs. (B.3) yields finally
Fis=9a2{1+51; V?,} RTfr, (B9
' 7 y6,0% . BO
o= 0 g2 o2 7% e 29
v Fams 9 4 6 { + u/ 6¢ + 2 6 “3/' 6¢} N7 (B-].O)
where % is given by (5.18) and: , l
1 .. [2e+1 g
— S F28) = (38“) (n2+2) 2. B

Until the numerical values of the quantities 3 4, = ), — ¥, and B = Biygq3
are known it is difficult to say which of the terms.in eq. (B.10) plays the greater part,
It seems reasonable that both are of the same order of magnitude.
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Note added in proof.

1. An account of the flucuation theory of isotropic scattering in binary fluid mixtures and of its application
to critical opalescence is to be found in the following papers: Pearson, F.J. and Rushbrooke, G.S,
Proc. Roy. Soc. {Edinburgh]. 4 64,305 (1957); and Pearson, F. J., Proc. Phys. Soc. 75, 633 (1960),
which became available to the author thanks to the kindness of Dr. F.J. Pearson after the present
had been handed in for printing. The foregoing papers contain i.a.a detailed discussion of the equation
for 1(s), as analogous to eq. (2.13), for the case when Fi; is given by (3.12) and Fopis = 0.

2. The computations leading from the general formulas (5.2) and (5.3) to eqgs. (5.13) and (5.14) were
carried out on certain simplifying assumptions not explicitly stated. These will be discussed in a sepa-
rate supplementary note, wherein, moreover, the factors Fi; and F,;; will be derived without these

assumptions.



