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The general principles of a statistical-molecular theory of light scattering in an
isotropic medium consisting of polar-anisotropic molecules are given.

A general, fundamental equation for the scattered intensity I is derived, containing
the molecular factors Fi, and F,y;, which account for isotropic and anisotropic light
scattering as brought about by the molecules of the medium. The molecular factors Fy
and F,;, are discussed in detail for the case of gases and liquids possessing molecules
whose linear dimensions are small with respect to the light wave-length. In such gases
and liquids, F;, depends on the mean polarizability of the molecule and on the radial
intermolecular correlations, whereas Fy;; depends on the symmetry and anisotropy of
polarizability of the molecules and on the orientational intermolecular correlations.
From the fundamental equation giving the scattered intensity, general expressions for
the optical anisotropy 4% and degree of depolarisation D of the scattered light, and for
Rayleigh’s ratio S and the extinction coefficient b are derived. For ideal gases, these
expressions reduce to the known formulas of Rayleigh-Born-Cabannes. For liquids
the molecules of which exhibit the axial symmetry, the expressions obtained for D, S
and A differ from those of Cabannes-King-Rocard in the anisotropic term by the
angular correlation factor R, which also appears in the formulas for the Cotton-Mouton
and Kerr constants. For compressed gases the molecular factors Fj, and Fpp; are
.expanded in inverse powers of the volume of the system. The coefficients of the expan-
sion, Ag, Af‘;““ and Bg, Bgnis’ termed, respectively, the first and second virial coeffi-
cients of isotropic and anisotropic light scattering, are computed for spherical molecules
of variable polarizability and for axially symmetrical anisotropic molecules possessing
a permanent dipole moment. Moreover, following Buckingham’s method, the effect of
the internal molecular field and the hyperpolarizability of the molecules on light scattering
in liquids is accounted for. Finally, general relations between the quantities D. S and
h and formulas relating these quantities and the - anisotropic term in Kerr's
constant K, ;. are derived. The zelations thus obtained contain no molecular parame-
ters and may serve for checking the theory by experimental results.

1. Introduction

The theory of classical scattering, in which the wave-length of the light is pre-
served, is due to Lord Rayleigh (1899), who considered a gas of spherical, non-absor-
bing molecules of linear dimensions small with respect to the wave-length.

Smoluchowski (1908) was the first to prove that light scattering in optically
homogeneous media arises from the spontaneous, thermal fluctuations of their density.
Einstein (1910), who developed Smoluchowski’s ideas, proposed a “phenomenological”’
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150 S. Kielich

i. e. thermodynamical theory of scattering in liquids whose molecules are spherical*’.
Gans (1923) generalized the Smoluchowski-Einstein theory for anisotropic molecules.

The *,,molecular” or electronic theory of the scattering of light in gases and
liquids possessing optically anisotropic molecules is due to Born (1917, 1933), Ca-
bannes (1921, 1929), King (1923}, Rocard (1928) and others.

Investigations by the foregoing authors proved that light scattering by a medium
consisting, quite generally, of anisotropic molecules is given by the superposition of
the scattering on fluctuations of its density and of the scattering occurring on fluctu-
ations of the optical anisotropy of the molecules. Moreover, Rocard (1928) proved
that scattering, especially in the neighbourhood of the critical point, is affected by the
fluctuations of the intermolecular field. The foregoing theories assumed molecular
interaction between the molecules, spherical or anisotropic, to depend solely on their
mutual distances. Clearly this was a weak point of these theories, since both in real
gases and in liquids consisting of anisotropic or polar-anisotropic molecules the
interaction between the latter is strongly dependent on their mutual orientation.
Hence, in addition to radial correlations, a theory of light scattering by condensed
media should also account for orientational intermolecular correlations.

Miiller (1936) was the first to consider orientational-molecular interaction, using
the method of Fowler-Debye, in his theory of scattering in non-polar liquids. Anselm
(1947), Benoit and Stockmayer (1956), and Prins and Prins (1956) proposed theories
of the degree of depolarisation of light scattered by real gases and liquids, wherein
the orientational-molecular interaction is described by Zernike and Prins® (1927)
correlation function, as generalized to account for orientation (cf. also Volkensteyn,
1951, and Weill, 1958). Buckingham and Stephen (1957) proposed a general theory
of the degree of depolarisation of light scattered by a dense medium; their theory
accounts i. a. for scattering on assemblies of spherical molecules and for the effect
of hyperpolarizability of the polar molecules.

In a former paper (Kielich, 1958a), the author proposed a generalization of
Born’s ,,gas” theory (1933) to liquids; therein, in addition to light scattering on
fluctuations of the density and of the anisotropy of polarizability of the molecules,
account is taken of scattering arising from the orientational interaction of molecules
of arbitrary symmetry. In the present paper a general, statistical-molecular theory of
light scattering in an isotropic medium consisting of anisotropic-polar molecules of
arbitrary symmetry is proposed.

2. Fundamental Statistical-Molecular Theory of Light Scattering in an Isotropic
Medium

We shall be considering an isot:opic medium of volume ¥ containing a large
number N of identical, optically anisotropic, polar molecules. The origin 0 of the
fixed system of reference (X,) is located at the centre of the volume. Let molecular

*) A molecular theory of light scattering by optically isotropic molecules of a fluid is given
by Fixman (1955).
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systems of reference (x{P), p = 1, 2, ... N be rigidly attached to each molecule of the
medium. The position and orientation of the molecules in volume V" are given by their
configurational variables T = 7 (¥, w); here, » = {1y, 75, ... 7} are those determining
the position, whereas w = {w,, @, ... @y} determine the orientation of the molecule.

The probability for a mutual configuration of the molecules in an element dv of
the configurational space is

dP (7} = f(v) d=,

with f(7) being the configurational statistical distribution function. By classical statis-
tical mechanics, we assume f(7) to be given by Gibbs’ canonical distribution function

U
Sty = Ce™ a1, 2.1)
wherein C is the normalisation constant, £ — Boltzmann’s constant, 7' — the Kelvin
temperature of the system and U(r) —its total potential energy.
Electric field of scattered light. Consider a parallel monochromatic light beam
of electric field

E(t) — E e~i2nvt

incident on the volume V of the medium. E denotes the electric field amplitude,
v — the frequency, and ¢ — the time.

Thus, the electric field of the incident light beam at the centre of the p-th molecule
of the medium situated at the distance 7, from the origin 0 of the system (X,) is of
the form

E(t)(P) — F i@t — k) (2.2)
wherein
2 27y
k= - Sy = - Sg,

with ¢ and A denoting the velocity and wave-length of the incident light, respectively;
S, is the unit vector in the direction of propagation.
The electric field given by (2.2) induces the time dependent dipole moment

m?(t)(P) - m?(p) e—~i(2:wt — k- rp) . (23)

within the p-th molecule of the volume V. Here, m’® is the amplitude of the dipole
moment of the p-th molecule. By classical electrodynamics, the dipole induced in the
molecule radiates electromagnetic waves in all directions. In the present paper, only
Rayleigh scattering, i. e. scattered light of the same wavelength A as that of the in-
cident light will be considered.

At considerable distances from the scattering system, the electric field of the
light wave scattered by the p-th molecule of the medium is of the form (cf. Born, 1933)

42

i ko _2®
P—M{Rp X [Rp X m’® 6—'(2”t kT RP)]}, (2.4)
»

E@® = —
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wherein R, = R, — 7, is the vector directed from the centre of the p-th molecule
to the point at which the radiation is observed. The latter point is at the distance R,
from the origin O of the system (X,). The distance at which the point of observation
is situated is great with respect to the linear dimensions [ of the scattering volume
and with respect to r,; thus, the following expansion may be written:

Ry =Ry — 1, = ROV——s’ ‘1, 4 |1 {O (I;—’;l) + }, (2.5)

wherein 8’ is the unit vector in the direction of the observation vector Ry =8’ R,
thus determining the direction of propagation of the scattered wave.

If Ry> I > r,, then R, may be replaced by R, everywhere in eq. (2.4) with the
exception of the exponential factor, wherein, with respect to the expansion (2.5), the
substitution is R, = Ry, — s’ - T,; this yields

dn2  —i2a (vr - %’i)

E@5)® = — e {87 X (87 X M ®) it~k - 15)}, (2.6)
with
el _2mv,,
A c

denoting the wave vector of the scattered light.
By eq. (2.6), the total electric field resulting from the light wave scattered by all
the molecules in volume ¥ at the point of observation is given by

2
E’(t + %’): — Z_;LEE; {8’ x (8’ X Me-i2m)} (2.7)
wherein
N .
M= Z M) R} - 7y (2.8)
p=1

denotes the amplitude of the total dipole moment induced in the medium of volume 7~
by the electric field of the incident light wave of amplitude E.

Intensity of scattered light. We shall now consider the total intensity of the
light scattered by the volume ¥, in order to determine the component thereof trans-
mitted by a Nicol prism analyzer at the point of observation. Let the direction of
the vibration transmitted by the nicol be that determined by the unit vector n per-
pendicular to the vector of observation R, = R, 8’. Since now 8’ - n = 0, the com-
ponent of the electric field E’ in the direction of the unit vector m is given by:

42

’, —
En R,

M -n e—iton, (2.9)
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The intensity of the light scattered by the volume V of an isotropic medium
and transmitted by a nicol is defined as follows:

I, =(E n(E n)*g; (2.10)

herein, the symbol { >g stands for the statistical mean value in the presence
of the electric field E of the incident light beam, and the asterisk denotes a complex
conjugate. Let @ = D (7, E) denote an arbitrary state function of the system in the
presence of the electric field E; then, with Gibbs’ distribution (2.1), the statistical
mean value of @ is determined at thermodynamical equilibrium of the system as

follows:
_UsB

(@O =C[ [.. [0, B)e *T duydr,...dry; @.11)

here, U (t, E) is the total potential energy of the system under consideration in the
presence of the electric field E of the incident light wave.

Substituting (2.9) in (2.10), the fundamental equation for I, may be written
as follows in tensor notation:

1 (2m\*
In = 'R—g <—Z—) <Mq M-, Ng n,>, ‘ (2.12)
the summation indices @, T assuming the values 1, 2, 3.
At not too great intensities of the incident light, the dipole moment M induced
within the volume ¥ may be assumed to be a linear function of the electric field
E. The dipole moment may then be written as follows:

M, (v, E)=A,, FE, = A, ¢, E, (2.13)
wherein
oM,
Agr = (QE, )E—o (2.14).

is the tensor of the optical polarizability of the medium of volume ¥, and e is the
unit vector in the direction of the electric field, E = e E.
By (2.13), eq. (2.12) yields for a spherical scattering sample of volume ¥ in vacuum

I, [27\* [n2 + 2\? N
I"=R—%(_[) ( 3 ) (Agr Avg g €211y €5, (2.15)

3
ne -2
of refractive index n; the symbol { > without lower indice denotes the statistical
mean value in the absence of an electric field (E = 0):

U()

(D) = Cff...f@(‘r)e *T gy, dry ... dTy. | (2.16).

Since the unit vectors ® and e satisfy the relations

2
wherein Iy = ( ) EE" is the incident light intensity within the spherical sample.

e,n,=cos 2, , e e, =n,n,=1,
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averageing over all possible directions of n and e with respect to the fixed system
of reference (X,) yields
e % (8 c0s2 Q1) (8,8, 8,,0,) + 22— cos? 2,)0,,0.},  (2.17)

oUT YVTe

with £, denoting the angle subtended by the umit vectors € and m, and §,, being
Kronecker’s symbol:

5. — 1foro=1
" 1 0foro#T’

The optical polarizability tensor A, being Hermitian, 4, = A,,, and with
respect to (2.17), eq. (2.15) yields the following general, fundamental equation for
the intensity of the light scattered by an isotropic medium:

I=0Q {5cos?2 2, F,, + 3+ cos?2 2,)F,,.}, (2.18)
wherein
Fis = < 601 6vg 'Aar sz >7 (219)
Fanis = % < (3601) 619 - 657 6vg) Aur Av; >’ (220)
with
I, (2a 4(n2+2 ?
Q= A5R? (7 ) 3 ) ' (2.21)

The quantities Fy; and F,; will be termed the molecular factors of isotropic and
anisotropic light scattering, respectively. With (2.8) and (2.14), F; and F,;; may by
rewritten in general form involving molecular parameéters

) IMD JOMD N, .
Fig (5) =  0ox 01 — 2 [ ) et g ), 2.22
)= o O 2 (aquﬁ "y 2.22)
1 am;(i’) am;@) x o
Fanis (3) = ”é‘ <(36¢w 51@ — g2 61/9) Z _Q—Fj(—p.)— (W) eTts 'pq>, (2.23)
g T e

wherein the quantity
s r,=Fk—-FK)r, (2.24)

determines the difference in phase between the light scattered by the p-th and ¢-th
molecules of the medium, with Ty =7,—1, being the vector connecting their centres,
and
b 27.6 b4
s:k—k:T(so—s). (2.25)

The polarizability tensor of a molecule immersed in the medium. As a first
approximation, it may be assumed that within a moderately condensed medium the di-
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pole moment is induced in the molecule only by the electric field E of the incident light
wave. If the medium is a condensed one, however, an internal field F® due to the
charge distribution of all the other N—1 molecules and superimposing its effect on
that of the field E® appears and acts on the p-th molecule. The dipole moment in-
duced in a molecule immersed within the condensed medium is given by (see Bucking-
ham and Stephen 1957)

m;(p) — “gz;) ( E;") + Fé”)) + % /g(p) ( Ea(f) + F;”)) ( Eff) + F/(g")) + _(1; 7571:;)/3;/ ( Eip) +

caf
+ F2) (EP + FP) (EP + FP) + ... (2.26)

where a{®) is the polarizability tensor, and BL, ygﬂ)ﬂy are the hyperpolarizability tensors
describing the field dependence of the polarizability. These tensors are symmetric
in all suffixes and have been discussed by Buckingham and Pople (1955 a).

The field F® may be computed by Kirkwood’s method (1936). Namely, if
the medium consists of anisotropic-polar molecules, and considering only dipolar
interactions, we have

N
F® = — Z:l TE (uP + mg?), (2.27)
=
wherein [u%“) is the permanent electric dipole moment of the isolated molecule, and the
tensor of dipolar interactions is given as follows:

1
T3 = 5 (0 O — 3 Toqu Toap) (2.28)
Pq

the latter assumes non-zero values for p 3 ¢ and is zero for p = gq.
From eqs. (2.26) and (2.27), the following formula is obtained for the field F
at the centre of the p-th molecule of the medium:

Fip) — Fgg) — E T;%q) “‘(eqy) Ef,“) + Z Té%q) al(ng T%r) “grs) Egr) -
q qr
— Z Tff,’,“’ ozf,"y) T%ﬁ al) T, e‘,’,‘) cxfj} E{Q + (2.29)

qrs

+ ST A TP o) T a3 T a2 B
grst °

with F® denoting the intermolecular field existing at the centre of the p-th molecule
immersed in the medium when the electric field E of the incident light wave is ab-
sent (E = 0). The field F?is given quite generally as follows:

N
F® — — Zl TGO 1@, 2.30)
£

wherein

m‘%) = ‘u%q) + azf;;) F(()f,) + .. (2.3
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is the total dipole moment of the molecule immersed in the medium at B = 0, or
explicitly:
R = — ST P+ BTl T
q ar
(@) (
— D TE &P T o) TS pfP + ... (2.23)
qrs
By (2.26), the polarizability tensor of the p-th molecule immersed in the con-
densed medium is given as follows:

(am;m) _ {“m + ﬂ(p) F® 1 & F® F® Hd + f_ﬁf} (2.33)
IEP | 5o e T Poap Sop T g7 Yoaby Bop Sov T o] O QEP -0
or, with respect to the expansion (2.29), explicitly:
' (p)
Bl 19 ) T ) — B ) T T ) T
S
" + 2ol TED o) TSP ozf,qé TSI o) TD olt) et ot — . (2.34)

qrst

The foregoing expansion shows the polarizability tensor of a molecule immersed
in a condensed medium to be constant in the first approximation only; generally,
however, this tensor is a function of the intermolecular field.

Potential energy of molecular interaction within the medium. From the defini-
tion of eq. (2.16), in order to compute effectively the molecular factors Fi (s) and F, ; (s)
given by (2.22) and (2.23), respectively, the potential energy U (t) of the mutual
interaction existing between the N molecules immersed in the medium of volume V'
should be known. The energy U (7) is dependent, in general, on the structure of the
molecules and on the thermodynamical state of the medium, and, in principle, con-
sists of two terms

U@)=UD @) + U (row), (2.35)

U (r) denoting the potential energy inherent in radial interaction of the molecules
only, and U2 (r, w) denoting that due to radial-orientational interaction,
For UM(#), the Lennard-Jones potential (1924) is usually applied (cf. Pople, 1954),

of the form
,\12 +\8
UD(r) = 4e* {(—rg) — (70) }, (2.36)

wherein the first term represents the repulsive energies and the second — the attrac-
tive. The quantity &¢* represents the negative value of the lowest potential energy,
r is the intermolecular distance and ry— the value of r at which the attractive and
repulsive energies exactly balance.



A Theory of Light Scattering 157

It is customary to include in U®(r, w) the energy of the Keesom dipole-dipole
interaction, as well as those of the Debye-Falkenhagen permanent dipole-induced
dipole interaction, the London anisotropic-dispersive interaction and, finally, the
multipole molecular interactions. For anisotropic-dipolar molecules, by (2.32),
Barker’s expression (1953) in tensor notation is obtained for UP(r, w):

U® (r,ow) =1 Z ‘u(P) T(pq) (q) %Z /U(P) T(pr) “f&? T%q) /1((54) +
par
+3 Z ,/g’) TED al) TSP af) TSO @ — . (2.37)
pars
herein, the consecutive terms determine interaction within assemblies of two (pg),
three (pgr), four (pgrs), ... of the N molecules present within the volume ¥ of the
medium.

The fundamental equation (2.18) containing the factors F, (s) and F,; (s) as
determined by (2.22) and (2.23), together with the polarizability tensor of the mole-
cule as given by (2.33) and the potential energy of molecular interaction (2.35) jointly
determine the general form of the statistical-molecular theory of light scattering by
an isotropic medium of an arbitrary nature.

3. Light Scattering in Gases and Liquids.

Factors Fy; and F,; for molecules exhibiting constant polarizability. If the
medium is but a moderately condensed one, the effect of the intermolecular field on the
polarizability tensor of the molecule may be neglected in the expansion of eq. (2.34),
and the expressions (2.22) and (2.23) may be written in the first approximation as
follows:

Fiul) = €000 2 af) ol e” e aay, 3.1)
ams (S) - % <(3 50‘1} w0 D‘t vg) Z “(P) a(q)* e_ls "p q> M (3'2)

For further discussion it is convenient to refer the tensor «®’ (and, similarly, x@)
to the molecular system (xﬁ-"’))i= 1,2,3 attached to the p-th (or, respectively, g-th)
molecule of the medium. Thus, we have the following transformation formulas:

o® = o® o® o,

) = oY 0 off 3)
in the case under consideration, the fixed (X,),_; 53 and molecular (x%),_ L2,
systems being rectangular ones, the transformation coefficients w$, ... {9 have the
meaning of the cosines of the angles subtended by the axes of these systems. The
cosines satisfy the general relationship

0, for p=gq,

(%2 for p# g, @.4)

b0 0lf = 0 o {2
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{9 denoting the cosine of the angle subtended by the i-th and k-th axes of the systems
() and (x{?) attached to the p-th and g-th molecules, respectively.

The tensor o’ determines the constant polarizability of the isolated molecule,
i. e. the polarizability independent of intermolecular fields. In optically inactive sub-
stances and throughout spectral ranges widely remote from those in which absorp-
tion appears, the tensor ozg-’) is symmetrical and real.

If all the scattering molecules present within the volume V are of one kind
a® = ocf-}) = ay, then, by (3.3) and (3.4), eqs. (3.1) and (3.2) may be rewritten as
follows:

Fis §) = /aii“" sin STpq , 3.5
0= G T "
o) =L (0 (0 5 5.y SSTpg\
Fanis(s) = 2 \GV;] 277} ; Bz wji i Owt) P > (3.6)
wherein
2n 4 . D
§ == _A_ ISO'—S’|=—Z—SIH_§; (3.7)

® denotes the angle between the direction of propagation 8, of the incident wave and
that of the scattered wave 8’, and is termed the angle of scattering.

Isotropic light scattering. With the radial correlation function g (r) introduced
into the theory of X-ray scattering by Zernike and Prins (1927), eq. (3.5) yields

Fi (s) = a;;o5 N {1 -+ 4«nfSin d [g(r) — %:I r? dr}, (3.8)

sr

wherein g (r) 4w r2 dr is the probability for the presence of a molecule within the
volume element 4t r2 dr at a distance r from the molecule whose position is fixed.

If the linear dimensions of the scattering molecules are small as compared to the
light wave-length A, we havel )

3—1;‘731 :1—%-(sr)2+ oo 1, ford>>r, (3.9)
and eq. (3.8) may now be written as follows:
N
Fiy=9q? N{l + 475[ [g(r) — —~V~J r2 dr}, (3.10)
0
with
1 1
@ =g G = g (g + g + g3) (3.11)

1 For values of r that are not small as compared with 4, a quantity similar to the factor F; has been
discussed in a paper by Fiirth and Williams (1954).
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denoting the mean polarizability of the isolated molecule. It is seen that F; depends
on the mean polarizability of the molecules a and on a quantity determining the
radial intermolecular correlations (see, Zernike and Prins 1927):

o

yr=1+4 4x [[g(r) - —];] rtdr = % kT, (3.12)
J L
wherein

1 [oV
br=— (5)1 (3.13)

is the isothermal compressibility coefficient of the medium.

Smoluchowski (1908) and Einstein (1910) showed that the quantity yp accounts
for the light scattering resulting from spontaneous density fluctuations in the medium.
As both « and yj are isotropic quantities, F;, determines isotropic scattering only.

Anisotropic light scattering. If the scattering molecules are small in terms of the
light wave-length, then, with respect to (3.9), eq. (3.6) yields

Fois = % 0 0y < PZ (30’5154) a’;('lp 0 — 8, 6kl) >- (3.14)
q

It is seen that the factor F,
mined by the polarizability tensor «

s depends on the anisotropy of the molecules as deter-

;» and on the angular intermolecular correlations
determined in general by the statistical distribution of the directions of the molecular
axes.

If the axes of the molecular systems coincide with the principal axes of the respec-

tive molecules, eq. (3.14) may be rewritten in the form
Foie =% D) @;2; (D] (3 cos? @S}’Q) - 1>, (3.15)
iy ?9

with ©F? denoting the angle between the i-th and j-th principal axes of the p-th and
g-th molecules, respectively, and «; — the polarizability tensor referred to the prin-
cipal axes of the molecule.

If the molecules possess the axial symmetry, the axis of symmetry being the
3-axis, then a; = &, # a3, and (3.15) yields

Foi = % (@ — )2 (3 cos? 099 — 1)}, (3.16)
pq

O®9 denoting the angle between the axes of symmetry of the p-th and g-th molecules,
and ay, @; — the polarizabilities of the molecule in the two principal directions
parallel and perpendicular to its axis of symmetry.

If, in particular, the molecules exhibit the spherical symmetry, a3 = &, and,
by eq. (3.16), F,,;, = 0. This means that F,

'mis determines the anisotropic light scat-
tering only. The latter arises chiefly from the anisotropy of the molecules and from

is

the angular intermolecular correlations.
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Light scattering in ideal gases. In ideal gases, the molecules are mutually inde-
pendent and may assume all possible configurations within the volume V. Since now

kT
the isotropical average. As shown by Smoluchowski (1908), the density fluctuations
in an ideal gas yield yz = 1, so that eq. (3.10) assumes the form

F,=9a2N. (3.17)

gas” is

exp {— U(T)= = 1, the statistical mean value ¢{ > of eq. (2.16) reduces to

The factor F,.;, as determined by eq. (3.14) may now be expanded as follows:
Fonis = 3 00y N {3 8,0 — 0,6 + 2 (300} w}f;) —0;0y)}; (3.18)

gas” anis
qFp
with respect to
o 0§D = } 8,8y, for p#~q, (3.19)
we finally obtain
gasFanis = 3 B o0 — ;o) N. (3.20)

In ideal gases, the anisotropic scattering depends only on the anisotropy of the
isolated molecules, whereas isotropic scattering depends on their mean polarizability.

Factor accounting for angular intermolecular correlations. Eq. (3.16) may be
written as follows:

Fonis = (23— a)® NRypy5 . (3.21)
the quantity
1 7 ‘
Rom = N (\pZ (3 cos2 O — 1)> (3.22)
q

appearing therein is termed angular intermolecular correlation factor, if the mole-
cules possess the axial symmetry. A factor R, of the same form also appears in the
theory of molecular orientational effects (cf. Buckingham 1955, and Piekara and
Kielich 1957, 1958). For an ideal gas U(r) = 0, and eq. (3.22) yields:

Ropg =143 (3cos20%0 — 1) =1. (3.23)
aF#p
The correlation factor (3.22) accounts for the angular interaction of the molecules
entering molecular assemblies which coalesce and disappear continually within the
medium; such assemblies present a momentary axis of maximum polarizability aris-
ing statistically from the effect of ordering of the molecular axes. From the foregoing
formulas it is seen that in an assembly of mutually ,,coupled“ molecules light scat-
tering differs from that resulting from free molecules, for which R, = 1.
For instance, for the case of molecules entering aggregates of two, Ry, as first
computed by Piekara (1939, 1950) is given by

Remy =2—3 ;3 (3.24)
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wherein L = L(y) is the well-known Langevin function and y = %—— the energy

of dipole coupling in 47 units. This refers to nitrobenzene, for which Ry as calcu-
lated according to eq. (3.14) for the Cotton-Mouton effect (hence the indices CM)
fits well with the experimental data. It is of interest that Ry for y £ 0 is always
larger than unity.

Anselm (1947), and Benoit and Stockmayer (1956) introduced the correlation
function g (r, ®) into the theory of the degree of depolarisation of scattered light;
this function has the properties of the radial distribution function g (r) of Zernike
and Prins (1927) as generalized for orientational correlations of the molecules. With
the function g (r, w), the correlation factor (3.22) takes the form

Rem=1+2n ff(3 cos2@ — 1) [g(r, ®) — 47ivVJ rrdrde, (3.25)

wherein @ is the angle subtended by the axis of symmetry of a given molecule and
that of an arbitrary one at distance r.

4. Optical Anisotropy and Degree of Depolarisation of Scattered Light
Optical anisotropy. The ratio of Fy; and Fj; which determine, respectively,
anisotropic and isotropic light scattering, i. e.

F .
2= anis
42 =g, (4.1)

yields a measure of the optical anisotropy of the scattering medium.
Substituting herein the expressions of egs. (3.10) and (3.14), we have

o o <2 BwR? oif? — 6, 0u)>
pa

)

this is an expression yielding a measure of the optical anisotropy of a liquid consisting

A2 — 4.2)

of molecules of arbitrary symmetry.
Hence, for ideal gases, we have ;A% = 62, wherein 9, is the optical anisotropy
of an isolated molecule

gt = Bt oty ®
Xii %jf
or, if the polarizability tensor be referred to the principal axes of the molecule,
02 = (o — og)® + (@ — %5)? + (o3 — x)? ) (4.4)

2 (o + oy + @3)?
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For molecules having the axial symmetry the foregoing expression reduces to

2 2
2_(F— % ) _ (%)
i (i) - (52 S
clearly, for spherically symmetrical molecules d, = 0.

In condensed gases and liquids whose molecules have the axial symmetry, eq.
(4.1) yields, with respect to (3.10) and (3.21):

g2 = o2 Bow (4.6)
YR

this means that the optical anisotropy of condensed gases and liquids depends on
that of the isolated molecule, J,, and on the ratio of the orientational (Repg) and
radial (y,) correlations.

Introducing R, from (3.25) into eq. (4.6), we obtain the Benoit-Stockmayer
(1956) formula:

sV 2 N | }
—W{l+2nf (3 cos?2@®@ — 1) [g(r,w)——m]r drdw¢; (4.7)

the latter has since been generalized by Ben01t and Weill (1956) and by Weill (1958)
for dilute solutions of liquids.

A2

Depolarisation ratio of scattered light. In a medium exhibiting anisotropic
scattering (F,;, 7 0), the light scattered undergoes depolarisation. The degree of
depolarisation is usually defined as the ratio of the lowest (I;,) and highest (I.,,)
possible values of the scattered intensity (see, Born 1933):

p = min (4.8)

—_— K
Imax

Lo and I, being computed from the fundamental equation (2.18).
If the light beam incident on the scattering medium is not polarized and if the
light scattered is observed with a Nicol prism, we have

cos £2, = cos @, cos @, + sin ¢, sin @, cos ¥; 4.9

the angles ¢,, ¢, and & are explained in Fig. 1. In the case under consideration, the
fundamental equation (2.18) should be averaged over all directions of the electric
vector E in the plane perpendicular to the propagation direction of the incident
wave, i. e. to the vector S,. This is equivalent to averageing over ¢, from 0 to 2x:

2n
I (g &) :2.%-[ Ldg., (4.10)
0
which yields, by (4.9),

(9, 9) = Q{5 (1—sin? ¢, sin? ) F; (s) 4 (7—sin? ¢, sin?P) F; (5)}. (4.11)
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When the nicol is rotated, the scattered intensity transmitted attains its maximum
value with the former transmitting vibrations parallel to the plane of the incident
light vector E only, 1. e. at g, = 0. The minimum scattered intensity is observed when
the nicol is set so as to transmit vibrations perpendicular to the plane of E, i. e. at

A

s

b d -
Fig. 1. Space arrangement of the unit vectors s, and s in the direction of the incident and scattered light

- -
beams, and of unit electric vectors ¢ and n in either light beam, respectively.

@, = 90°. Thus, by the definition of eq. (4.8) and with respect to (4.11), a general
expression for the degree of depolarisation of light scattered by an isotropic medium
is obtained as follows:

5cos2d Fis (s) + (6 + cos® &) Fanis (5)
5F (5) + 7 Fanis (9) ’

When observation of the light scattered is carried out at an angle of 90° with
respect to the direction of incidence and if the scatiering medium satisfies the condi-
tion of eq. (3.9), the following relation is obtained for & = 90°:

6 F, anis

D) = (4.12)

=D — . 4.13
DO =D = s T Fo *19

The degree of depolarisation D thus defined is related to
D 3 Fanis (4.14)

5 Fy + 4 Fams
the degree of depolarisation for plane polarized incident light, by the formula

D 2D
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The formula (4.13) (or (4.14)) together with expressions (2.22) and (2.23) is
identical with the one derived by Buckingham and Stephen (1957) in their theory of
the degree of depolarisation of light scattered by a dense medium.

Degree of depolarisation in some special cases. Substituting Fi; and F, , as
given by (3.10) and (3.14), in the general expression (4.13), an expression for the degree
of depolarisation of light in condensed gases and liquids possessing molecules of
arbitrary symmetry is obtained (Kielich 1958a, Piekara and Kielich 1958):

6 2 {23 (30E? wf? — b8 0w)>
D= 22 . @16
10@;; a; Nyr + Ta e <) Gwf? of? — 8, 0u))
2

For substances whose molecules exhibit the axial symmetry, (4.16) reduces to

2
__60; Rom (4.17)

N SVR -+ 7(5: -RCM,
where §, = (@3 — o)) / 3, and R, 1s given by (3.22). If the angular correlation
factor R, is given by (3.25), the eq. (4.17) is identical with the result obtained by
Anselm (1947), and Benoit and Stockmayer (1956).

For an ideal gas, (4.16) yields the Gans-Cabannes formula:

6 (3o o;; — oy ) 66
oD = i O — i % =_2% 4.18
& 100 07 + 7 Baiyorij — @i z) 5 4 7682 (4.18)

For a substance whose molecules possess the spherical symmetry, 6, = 0, and
the degree of depolarisation assumes the value zero, which means that in such a me-
dium light undergoes no depolarization.

5. Rayleigh’s Ratio and Coefficient of Extinction

Rayleigh’s ratio. With an incident beam of natural light, and if observation is
carried out without a nicol, eq. (4.11) should, additionally, be averaged over all
values of @, from 0 to 27, thus

27
1
) =5 f I (@n, 9) dopn 5 (5.1)
0
hence, with respect to (4.11), ‘
I(@)=130Q {51 + cos? D) Fis (s) + (13 + c0s2F) Fonis (s) }. (5.2)
The scattering constant, also known as Rayleigh’s ratio, is defined as follows:
2
S = 1) Ry ; (5.3)
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by (5.2), the following general expression for Rayleigh’s ratio is obtained

90V \ 1

If observation is at an angle of 90° with respect to the direction of incidence
(9 = 90°) and if eq. (3.9) is satisfied, the foregoing expression reduces to

S(®) = — (2”) (” +2) (5 (1 + c0s28) Fig(s) + (13 + cos29) Funis (5)}.  (5.4)

| 27'5\)4 n? + 2
5(90)=S—90—V<7‘ ( 3 ) (5F18+13Fams) (55)

Extinction coefficient. In passing through the medium, the intensity of the
light beam diminishes as a result of scattering (the effect of absorption is neglected
here). On emerging from a layer of thickness /, the intensity is given by the
well-know Lambert law

[ =1I,eH, (5.6)

wherein 4 is a coefficient dependent on the properties of the medium and on the light
wave-length 4, and determines the weakening of a beam of intensity I, resulting from
scattering. By definition (see, Cabannes 1929),

2n n

h=[ [S()sinddddg, (5.7)
¢ 0

i. e. by (5.4), a general expression for the coefficient of extinction (turbidity) is hence
derived:

7

7 27\ [n2 -+ 2)\°
0

+ cos2 D) Fonis (s)} sin 9dd, (5.8
wherein Fi (s) and F, ; (s) are given by eqs. (2.22) and (2.23).
In particular, for small molecules, i. e. if the condition of e§. (3.9) is satisfied,
the foregoing equation yields

8n [27\* [n2 + 2\°
h= PTi% (7) (—3—) (Fis + 2 Fanis)- (5.9

S and h for special cases. Substituting F;, and F,; from eqgs. (3.10) and (3.14)
in eqs. (5.5) and (5.9), the following expression is obtained for real gases and liquids
consisting of molecules of arbitrary symmetry:

1 {27\* [n2+2 e N
S:E(—;) (n . ) Vauakllléudkz[l—{—él«n / (g_v),zdr]_}_
0

1(1)3N <Z Bol? of? — o 5kl)>}’ (5.10)
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8w [27\* [n2 2 . N
h= 97 (7) <-——n 3 ) 7 “u“kl{(suékl[]. +4n] (g_ 7) r2dr] 4
0
Z (3 w(pq) }qu) — 6”- 6kl)>} . (511)

If the tensor of optical polarizability be referred to the principal :axes of the
molecule, these equations yield:

521_1{3_(2_;)4 (n2—|—2 i: {7R+ o <Z (3 cos? OL? — 1)>[

(5.12)
3
87 [on n2+ 2\’ N 1 7 .

= - ) == .o — 2 PD) .

h 27(1) ( 3/ V{;]“;a] yR+N\\; (3005 @i] 1)/}
(5.13)

With the Lorentz-Lorenz formula

nz—1 dx N (5.14)

wiz 3T

and for molecules having the axial symmetry, eqs. (5.12) and (5.13) reduce to

2(n2 —1)2 ¥ i3
S=%(7R+362RCM), (5.15)
8ad (n? — 1)V
h="1"" (?% (yR+26§RCM>, (5.16)

wherein 0, is the optical anisotropy of an axially symmetric molecule. The formulas
derived differ from the analogous King-Rocard formulas by the orientational correla-
tion factor Ry, in the term accounting for anisotropy. For spherically symmetrical
molecules, 8, = 0, and eqgs. (5.15) and (5.16) assume the form of the Einstein-Smolu-
chowski-Rocard formulas for liquids consisting of spherical molecules:

72 (n? — 1)2

224

8n3 (n® — 1)2

5= 314

ETfr, h= kTBr. (5.17)
For an ideal gas, by (4.3) and with the Lorentz-Lorenz equation, eqs. (5.10) and

(5.11) yield the Born-Cabannes formulas:

@ — 1)V 13
S = i (1 + = 60,) : (5.18)
3 2 __
b — 220 “DPV 0 0s3, (5.19)

T 3N
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For an ideal gas consisting of spherical molecules the Born-Cabannes formulas
reduce to the well-known formulas given by Rayleigh:

2n2 (n— 12V
AN ’

323 (n — )2V

sas = 3N

gasht = (5.20)

6. Second Virial Coefficients for Light Scattering in Compressed Gases

General form of virial coefficients. Virial coefficients have been computed by
Harris and Alder (1953) and by Buckingham and Pople (1955) in the theory of electric
polarisation, and by Buckingham (1955) in that of Kerr’s effect. The virial coefficients
for light scattering in compressed gases will now be computed by the method of the
latter authors. For this, the molecular factors Fi (s) and F,; (s) given by eqs. (2.22)
and (2.23) are expanded in powers of 1/}

c¥
Fxs (3) = AS + + + (61)
anis ams leS
Fanis(s) = 4s + =ty s (6'2)
the coefficients A%, A% Bis, Bgf‘is, Ct, C*‘“is . are termed the first, second,
third, ... virial coefficient of isotropic (F,) and amsotroplc (F s light scattering,

respectively.
The first virial coefficients are defined as follows:
Afé = lim Fy, (s), Ag“is = lim F,; (s); (6.3)
Voo Voo

by (2.22) and (2.23) we have
Al = 9a2N, A% = 9a2 §2N, (6.4)

wherein « is the mean polarizability of the isolated molecule, and §, denotes its ani-
sotropy as given in general form by eq. (4.3). Comparison with egs. (3.17) and (3.20)
shows that the first virial coefficients A% and A% account for light scattering by
free molecules (“gas molecules™).

By definition, the second virial coefficients are given by

BE = lim {[F, (s) — 4] V). (65)
Voo
BF = lim {[Fypy(5) — AF®) V}; (6.6)

V-oo
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by (2.22), (2.23) and (6.4), they may be written in the following general form:

> s *
ama(P) (amv(q)) e—ia v

BS — lim {<a 5ro 9t N YV } 6.7)

Voo = 9EP \9EP
Om P (o @\
ams — hm{< (300, 20 — 05z 04p) OGN Al A It LA Og? 62 N> V}
vow )l N2 ¢ o= 9EP \9EY®
(6.8)

As the second virial coefficients contain only contributions accounting for the inter-
action of molecules in pairs, eqs. (6.7) and (6.8) may be rewritten as follows

2 m® [ g ® D\ * U -
1s _ 4'7UN ]f ( + Imy ) — 9a2} e *T r2drdow, (6.9)

;,)Eﬂ) QE“) é)E?)
anis 277IN am;(l) Qm:,(l) am:(z) *
e f f {(36‘” e = Oer Ond) (aEgn T oEd) T
~ U
— 18a? 62}e T 12 dr do, (6.10)

wherein m ", m,® are the dipole moments of molecules 1 and 2, Uy, is the potential
energy of interaction between a pair of molecules, and 2 = [dw is the integral over
all angular coordinates. @

Spherically symmetric molecules. For simplification, assume the scattering

molecules to have spherical symmetry. Then, by (6.4), the first virial coefficients are
Af =942 N, A¥s—0, 6.11)

i. e., the first virial coefficient of anisotropic scattering vanishes.

To compute the second virial coefficients, the expansion (2.34), which accounts
for the effect of the intermolecular field on the polarizability of a molecule immersed
in a condensed medium, will be applied. Since for spherically symmetrical molecules
the tensor a;; reduces to the isotropic tensor a;; = « d,;, and with respect to ex-
pansion (2.34) and condition (3.9), egs. (6.9) and (6. 10) yield

. um
B§=36na2N2f{1+8—+8—+32——|— }e T 2 dr, (6.12)

r
_Um

. a2 o3 ot
B$™ = 727 o N? - 25 +7T5+ .. e *T 24, 6.13)
r r r
Pople (1954), assuming U(r) in the form of the Lennard-Jones potential (2.36),
proved that

~ —_ M I 3—n
fr‘" e KT r2dr=— 012 ¥yt H, (%), 6.14)
0
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wherein .
27—n X
ém +n—3 "
m=0

%

*
with y = 2 (EST) . The functions H, (y) have been discussed and their values tabu-

lated by Buckingham and Pople (1955b).
With eq. (6.14), we obtain finally from (6.12) and (6.13)

y 247 ¢t N2
B8 = 9ut 7 — 1) + 2T {H 0) + 51, 0) +4% le(yH‘ }(6.16>
0
anis 6 N2
pae _ Sl Ve jH(y)+2 ) +1% Hm(y)+ } (6.17)
7'0_'}’ 0

wherein yj is defined in analogy with (3.12).

Thus, in compressed gases consisting of spherical molecules, Aiss;/—- 0, Bf;;é 0
and A% = 0, whilst B¥* 3£ 0. This means that free spherical molecules give rise
to isotropic light scattering in a medium. However, in compressed gases, intermole-
cular forces cause the spherical molecules to form assemblies, which represent aniso-
tropic scattering centres for the incident light beam. It is seen from eq. (6.17) that even
the presence of assemblies consisting of no more that two spherical molecules is suf-
ficient for the medium to exhibit additional, anisotropic scattering. Hence, on passing
through such a medium, light may undergo depolarization.

Axial symmetrical molecules with dipole moment. If the anisotropic molecules
possess the axial symmetry, then, neglecting all terms in the higher powers of the tensor
«; in expansion (2.34), we may write, by (6.9) and (6.10)

. 2z (Ff _Un
B — 367:2 N® j [e ET 12 dr do, (6.18)
. 2 Ulﬁ
s _ 187 “ "5 N TR 2 dr do, (6.19)

wherein @12 is the angle subtended by the axes of symmetry of molecules 1 and 2.

Combining eqs. (2.36) and (2.37), the following expression is obtained for the
potential energy of interaction of two dipole molecules (the permanent dipole-induced
dipole interaction is neglected):

e IR [\ 2 o @ _ (12)
U, = 4e ol IR -3 (3 cos @M cos @D — cos O1D),  (6.20)

r

with cos @12 = cos @D cosO@ + sin OV sin OP cos (g, — @;), wherein the angles
012, 0W, ... @, are explained in Fig. 2.
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Substituting (6.20) in (6.18) and (6.19) we obtain, by (6.14),

s 2,3, 272 312 44
B§ =922 NV (yr—1) + Z5 _{Hﬁ 0) + g5 Hu () + } (6.21)

‘ Z

X -
Fig. 2. Angles determining the mutual orientation of two dipoles %) and 7(2 in the fixed system of
reference (x, v, z)

is 7 o 0% 1y x2 N2 3x2 4
pypie < ZE el N {H 0) + 2L o) + } (6.22)
2
wherein x = f 5"
e* ry

The virial coefficient B2 is related as follows to the second Kerr constant
virial coefficient B as computed for the case under consideration by Buckingham

(1955):

4n a 6:2 anis
Bx = 105757 = e Bs™, (6:23)
wherein
_ G0
8, = o (6.24)

is the electrical anisotropy of an axially symmetric molecule, and a = § (a3 + 2a;) —
its mean polarizability in a static electric field*).

*) A detailed discussion of sts' and Bgnis for other molecular models will be given in a sub-
sequent paper by the author.
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7. Effect of the Molecular Field and Hyperpolarizability of the Molecules on Light
Scattering in Liguids

In a condensed medium, light scattering depends also on the molecular field
and on the hyperpolarizability of the molecules (see Buckingham and Stephen 1957).
In the present case, when computing the molecular factors F,, and F, ., the tensor
of the polarizability of the molecules, as given by the expansion (2.33), should be
applied. The expressions of (2.22) and (2.23) may be written as follows:

Fi (s) = <5,,, Bro L (@ 0@ + VED) cos 8- 7 > (1.1)

Fanis (s) = E \(3607 0z — Oov Oyg) 2 (@f ol + VED) cos s - rpq> » (1.2)
2]

wherein the tensor

ngfg) — a(p) Ig(q) F(q) (q) ﬂ(p) F(p) + ﬂ(p) /3(”) F(p) F(q) +

ey ory ory I~ vd
Y 4 (
o9, FOED + 102 Y0 FORD .

(p) (q) (») (a)
OF OFY  FP 9Ff ) 3

(?) ()
+ (og o + ) <9E<P) O+ e 3 pw + 57w 9E®

determines the effect of the internal molecular field and hyperpolarizability of the
molecules on light scattering in a condensed medium.

Light scattering on assemblies of spherical molecules. In order to obtain insight
into the part played by the internal molecular field in the scattering of light, it will be
assumed for the sake of simplicity that the condensed medium consists of assemblies

of spherical molecules. Thus, t; = P =10 and a,, y;;, reduce to the isotropic

7°
tensors given by

@y = Qs Vi = V(050 + 0y 0 + 0,0y), (7.4)
and the foregoing expressions yield, quite generally:

l 9 F(P) o F(d) o} F(P) 9 Féq)
Fy (S) = \Z 9+3 E(P) +3 QE(q) + QETP) aEg]) +

+ 2y (FYFD+ FPFSD + } 05 877, >, (7.5)

2

F(P) F(q) Pl F(P) 9 F(él)
i 0) = <Z{ ( o5y ory  aroapp) T " " 09
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If 2> r, the foregoing relations yield a general expression for the optical aniso-
tropy A2 of a condensed medium consisting of spherical molecules:

2 ( aF(P) aF(Q) QF;P) aFgI) )\
AN E“’) E“’) IEP 3 Efgq) /
A2 = : a7

F(P) QF(q) QF(EP) QF%Q) \
2\\Z<9 + 39E(P) +3 QE(q) + QE?)QE%I) /

Hence, it is clearly seen that the optical anisotropy of such a medium arises
from. fluctuations of the molecular field. If the internal molecular field F® is here
assumed to be given by the expansion (2.29), which, in the case of spherical molecules,
takes the form

FP = F® — g 3 TOED + a2 3 TETED — .., (1.8)
r rs

then eq. (7.7) reduces to

a2 Z T(pr) T(qs)>

42 = L . 7.
6Ny + 2a2( Z (T(pr> T(rs) + qur) T %))) (7.9)

pars

This yields, by approximation,

dn 2V
2 __ (or) plas)N
4 6NkTﬂT<§ Ty Tas > = ETBr

-4 g (1) dr. (7.10)

As F,;, # 0, the light scattered on assemblies of spherical molecules undergeos
depolarisation (D # 0). Buckingham and Stephen (1957) showed that, in the case
under consideration, the degree of depolarisation D may be expressed by the difference
between the molecular refraction of the fluid (R,,) and that of the perfect gas (g, R0

Polar liquids. Buckingham and Stephen, in the theory proposed by them (1957),
proved the value of the degree of depolarization D in polar liquids to be strongly
dependent on the hyperpolarizability of the molecules.

If an isolated molecule possesses an axis of symmetry, and if this is the 3-axis,

then the following components of the tensors u;, @, and f,; have non-zero values:
Hg = phy Oy = Ogg = 0y 7 Olgg = 003, friz = Pony = P13 7 Pags = Paa- (7.11)
As a first approximation, expressions (7.1) and (7.2) may be reduced to the form

—s”-‘) : (7.12)

STpq

Fis(s) = <Z {(ag + 2a1) + (Bas + 2P19) Foa}? §in
g

Fanis(s) = b} \Z {(otg — “1) + (Bss — Pra) Foa}? (3 cos? @92 — 1) Sll;r::pq>
(7.13)



A Theory of Light Scattering 173

Buckingham and Stephen (1957) showed that, in the case of Onsager’s model
(1936),

7 _2E—)@E-1 £~
87 32 + n?) @’

(7.14)

wherein ¢ is the static dielectric constant of the medium. Thus, for small scattering
molecules, eqs. (7.12) and (7.13) reduce to

2
Fiy =92 {1 42 (83”(2?1{”22; D ’;—’z} Nyg, (7.15)
Fanis = 92 {1 +2 (63_(21)J(Fn;2-)_ D §§ }2 62 NRow» (1.16)
B=3 Gut 2, o=l (r.17)

with 8 denoting the mean hyperpolarizability of the isolated dipolar molecule, and g
yielding a measure of the anisotropy of its hyperpolarizability.

Substituting (7.15) and (7.16) with R, = 1in eq. (4.13), the Buckingham-Ste-
phen formula for the degree of depolarization in polar liquids is obtained:

4= @n*—1) upd
6 {1 + 3 (2¢ + n? o? 52} %
5{1 LA —1) pf 4(—1) (@*—1) pp 56} 8

D=
30 + 9 a—z}VR+7{1+ 30+ 79  aFé,

. (7.18)

Similarly, by (5.5), the following formula for Rayleigh’s ratio is obtained:

g_ 7 (n? 1) V{[l LA =D) (2 =) ﬂg] .

24N 3 (2¢ + n? o?

13 [, 4(e—1)(n*—1) puBd
+5 [1 t S @y o ai] 53}. (7.19)

These are formulas which, if the quantities D and S are known from experimental
data, yield the value of the hyperpolarizability of the isolated molecule.

8. General Relations

From the theory, as discussed in detail in §§ 3 to 7, it is seen that, in order to
compute the quantities D, S and & for a given condensed substance, the quantities
accounting for the radial and angular intermolecular correlations should be known,
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in addition to those describing the properties of the isolated molecules. Since, for
a given substance, it may well be the case that not all the molecular parameters are
known simultaneously, it is convenient to compute the quantities D, S and & from
relations containing only such quantities as are accessible to experimental determi-
nation.

Relations between D, S and h. Eqs. (4.1) and (4.12) yield

5 {D (8) — cos® ¥}
6—7 D) + cos?d’

Fanis (3) A2 ( 19)

T (5 8.1)

a relation whose left hand side coincides with the theoretical definition of the optical
anisotropy of the medium, and whose right hand side makes it possible to compute
A? directly from experimental data on the degree of depolarisation of the light scat-
tered.

By (8.1), eq. (5.4) determining S () may be rewritten in the form

1 {2 n? 4 2 2{6+6D(ﬂ)} sin2§

5@ = 18V(/1) ( 3 ) 6= 7D () + costd 1> 8.2)
1 27 n? 4 2 2 {6 + 6D(19)} sin? 9 .

S0 = 187 ( A ) ( 3 ) 5{D(¥) — cos? ¥} Fania (5) (8.3)

wherein Fy; (s) and F,;; (s) are given by (2.22) and (2.23), and # is the angle of scat-
tering.

If observation is perpendicular to the incident beam (& = 90°), eqs. (8.1) —
(8.3) vield, for scattering molecules of small dimensions,

Fams 5D
T, == /2 =6—7p" 8.4)
1 (27\* [n2 +2\%6 + 6D
S= 1‘9?(7) ( ) §—7p (8
1 (2= n®+4 2\“6 4 6D
S = W (7) ( ) Fanis . (86)

Under identical conditions, by eq. (5.9) and with respect to (8.4), the extinction
coefficient is obtained as follows:

_ 8a (2a\*[n2+2\%6+3D
_2_7?<7) ( 3 )6—7DF‘“ ®.7)

87 [27\* (n2 +2\%26 1 3D
h‘ﬁ(T)( 3 ) 5D Lamis: ®38)
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Finally, the foregoing expressions yield the general relations:

D@) =D (1—]—1—Dcos20), 8.9)
— 1-D 2
S@) =S (1 +1p s 0), (8.10)
8z 24D
b= ST (8.11)

which hold for a medium of arbitrary density consisting of scattering molecules of
small dimensions. Analogous relations were derived by Cabannes (1929) for light
scattering on isolated molecules.

If the intermolecular field existing within the condensed medium be neglected,
the molecular factor Fi; of isotropic scattering may be expressed by experimentally

known quantities. Namely, with respect to the Lorentz-Lorenz equation (5.14), eq.

(3.10) yields
81 [n2—1\2
Fu= 125 (m) V kT Br. (8.12)

Substituting the foregoing expressions in eqs. (8.5) and (8.7), we obtain the
Cabannes-King-Rocard formulas

a2 (n? — 1)2 6 + 6D

S= 2185 6—1D

kT Br,

(8.13)

8n%(n? — 1)2 6 +3D

314 6—17D
which contain no molecular parameters and may be checked experimentally.

Anisotropic light scattering and Kerr effect. The molecular factor F,,; account-

ing for anisotropic scattering may be expressed by the anisotropic term in Kerr’s
constant. By a general relation,

h:

kT Br,

1215 n? (n? — 1) ETV
2n(e — 1) (e +2) (n?+2)8
wherein & denotes the electric permittivity of the medium. The anisotropic term in
Kerr’s constant is, in general, given by the following expression (cf. Kielich 1958b):

At 2% (e+2)2 < om® am@
Kams - 1215 71,2 kTV (3607 T T 60‘1 61:9) Z QE QE,,Q (8.15)

F, anis —

K (8.14)

with m® denoting the dipole moment induced in the molecule by the variable electric
field E of the light wave, and m — the total dipole moment of the g-th molecule
in the presence of the static electric field E, inducing optical birefringence in the
medium.
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For molecules possessing constant polarizability, eq. (8.15) yields

a(n? + 2)2 (e + 2)2 a;5a
Kanis = ( 12?[5(712 le)'/ . kl< Z (30)(754) w](fq) - 6i] 6k1)> (8'16)
pq

wherein a;; is the electric polarizability tensor of the isolated molecule. In particular,
if the molecules have the axial symmetry, eq. (8.16) reduces to
2_DE—-1) B2 +2)(c+2)V

(@
Ranie = 1807 n® kTN O % Row, (8.17)

with Ry, denoting the correlation factor given by (3.22).
For the case of a condensed medium consisting of spherical molecules, the ge-
neral expression (8.15) yields

=@ (n? + 2)% (e + 2%2aa < F(p) QF@ F(p)a (@) \
Kinin = 1215 n2 KTV Z 9E; 9E,; 0K, an,, y @18

or, as a first approximation:

(n2+228+22062602 " s
Kanis = 40)5 ,Eg ]CTV) / Tgf,}) T;%)>‘ (819)

pqrs
The quantities D, S, h, and Kerr's constant K,;, . Substituting eq. (8.14) in (8.6)

anis *
and (8.8), we obtain the general expressions

7278 n?(n® — 1) kT
Me—1)(e+2) (n* +2)
19274 n?(n? — 1) kT
ME—1)(e+2)(n?+ 2

which contain experimentally accessible quantities only, and hold for condensed

S = (1 4+ DY) Kaniss (8.20)

h= (1 + 2DY) Kuniss (8.21)

media consisting of molecules of arbitrary symmetry.
Combining expression (8.4) and eqgs. (8.12) and (8.14), we have

5D 1207 n® Kanis .
6 — 7D - (n2 _— 1) (E —_ 1) (n2'~}, 2) (E _|_ 2) /3T ’ (822)
hence, Gans’ formula (1923) is obtained:
2 — 2
Ky = =D E=-D(*+2)(+2)  frD 629

24m n? 6—71D’

which yields a relation between Kerr’s constant and the degree of depolarisation of
the light scattered.
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Substituting F,, and F,;; as given by (8.12) and (8.14) in eqs. (5.5) and (5.9),

we have -
_a?(n® —1)? 3127 n2 Kyn;s
S=""9m ’“T{ﬂT+ W=D =1 (2 +9) (e+2)}’ (6.24)
_ 8a3(n?—1)2 24078 n? Kanis
h=—"3n kT{ﬂT T D =D +2) (e +2 } (8.25)

Conclusions. The quantities D, S and & accounting for light scattering in an iso-
tropic medium are given (§§4—7) in terms of various molecular parameters inac-
cessible to experiment; on the other hand, the same quantities are related mutually
and with Kerr’s constant, thus yielding the basis for comparing the theoretically
predicted results and those obtained experimentally. Thus, a study of light scattering
may serve not only to determine the shape and properties of the isolated molecules,
but also to obtain valuable data on the nature of the molecular interaction existing
in a condensed medium.

The author wishes to express his sincere thanks to Professor Dr A. Piekara for
his valuable advice and for his helpful interest throughout the present investigation.
The author is greatly indebted to Dr A. D. Buckingham for his stimulating discus-
sions of some of the problems under consideration.
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