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It is the aim of the present investigation to establish a unified statistical-molecular
theory of the nine electric, magnetic and optical saturation phenomena in isotropic
dielectric and diamagnetic media (gases, condensed gases, liquids). For the case
of a condensed medium composed of polar molecules of arbitrary symmetry, anisotro-
pically polarizable and non-linearly deformable in an external field, general expressions
yielding the nine molar constants have been derived, namely:

group I — the electric saturation: S%; in an electric, Siy in a magnetic and S in
an optical field;

group II — the magnetic saturation: Syy in an electric, Sf* in a magnetic and S37
in an optical field;

group III — the optical saturation: S§; in an electric, Si7 in a magnetic and S§7in

an optical field.

A discussion of these molar constants is given for particular cases of spherical and
axial symmetry of the molecules. For axial symmetry, the general formulas reduce to
those given previously. Moreover, expressions have been derived which relate
the above-mentioned molar constants to the variations of the electric permittivity
A€, Ae™, Ae®, of the magnetic permeability Au®, Au™, Au°, and of the optical
refractive index An®, An™, An° of the medium respectively, as resulting from the
action thereon of a strong polarizing electric, magnetic or optical field. Only three
of the nine possible effects under consideration have been detected to-date, namely,
the electrooptical Kerr effect, the magneto-optical Cotton-Mouton effect and the
electric saturation in an electric field, i. e. electro-electric saturation. The authors
have derived equations for computing each of the six as yet unknown quantites 4™,
A, ... An’® from the known experimental Kerr and Cotton-Mouton constants. By
these formulas, the quantities A&™, Ae° ... An° have been numerically computed
for nitrobenzene.
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1. Introduction

The electric, magnetic and optical properties of an isotropic medium are deter-
mined by the three scalar coefficients e, # and n characteristic of the substance.
The electric permittivity ¢ and the magnetic permeability 4 of the medium are measured
applying an electric or magnetic field, respectively, which vary slowly, and whose
frequency is much smaller than that of the Debye dispersion. The optical refractive
index n is measured by an optical field, which is here understood to be the electric
field of an electro-magnetic wave whose frequency exceeds that of the Debye dispersion.
Such fields will be termed the electric F’, magnetic H’ and optical &’ measuring field,
respectively.

The present paper deals exclusively with dielectric, diamagnetic and isotropic
media. Placed within one of these fields, the medium undergoes polarization of a kind
corresponding to the measuring field and determined, respectively, by the vectors
of electric polarization P°, magnetic polarisation P™ and optical polarisation P°.
The relation between the electromagnetic material coefficients &, u and n, on the one
hand and the vectors P¢, P"and P° on the other, is given by the following general
equations of electrodynamics:

e
e—l=4n‘9i ,u—«l:éanTI;?, n2H1=4~ng—Z’. (1.1)

Usually, measuring fields E’, H’ and & of small intensity are applied experimen-
tally; as a result, each of the vectors P¢, P” and P° in egs. (1.1) is a linear function
of the respective measuring field giving rise to the polarization, and the quantities &,
# and n are functions which do not depend on the field, but depend solely on the
medium and its thermodynamically determined state.

An entirely different picture is obtained if an additional external field of great
intensity is applied, as e. g. a constant electric field E. In this case, the polarization
arising from the external field tends to saturation; the polarization vectors P, P” and
P are now generally non-linear functions of the external field, whereas the electro-
magnetic material coefficients &, u and n now become functions (in at least the second
degree) of the additionnally applied external electric field E. This latter field will
be termed the polarizing electric field. :

The variations of the coefficients e, @ and n as arising from the effect of a strong
electric polarizing field E on the medium will be defined as follows:

A& = e — ¢, Apf = p*—pu, An°=n°—n, (1.2)

wherein ¢, u° and »° denote the electric permittivity, magnetic permeability and
optical refractive index of the medium, respectively, as measured in the presence of
the polarizing field E, whereas ¢, # and n denote the respective quantities as measured
without a polarizing field (at E = 0).
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A constant magnetic field H, or an optical field &, may serve, too, as polarizing
field; hence, the variations of ¢, 4 and n may be defined in analogy to those of eqgs.
(1.2) as brought about by a magnetic polarizing field H:

A" =g —e, Ap"=p"—pu, An™=n"_n, (1.3)

or by a polarizing optical field &:
Ae® =" —¢,  Ap’=p’—u, 4An°=n°—n. (1.4)
Thus, a set of nine theoretically possible variations of the electromagnetic material

coefficients ¢, 4 and n resulting from the effect of an external polarizing field E, H
or & are obtained, as shown in the following table:

\\\ polarizing field
™ electric | magnetic | optical
E H &
measuring field
electric B’ A ge A em 4 g0
magnetic H’ A pe a4 pm A4 pe
optical % A ne A nm A n°

The variations defined in eqs. (1.2) — (1.4) will be termed, with respect to the
coefficient measured, effects of electric (4¢?, Ae™, Ae°), magnetic (Au®, Au™, Au°)
and optical (4n®, An™, An%) saturation. Strictly speaking, the effects Aef, Ae™,

. etc. found experimentally did not represent the true saturation effect because of
two by-effects appearing in the measurements. These are the reversible quadratic
electro- or magneto-caloric and electro-or magnetostrictive effects. By computing
both by-effects (see Piekara, Chelkowski and Kielich, 1957) and subtracting from the
effect measured, e. g. A¢°, the true saturation effect is obtained, e. g.,

Al = Nef — A’ — A&t (1.5)

electrocal. electrostrict.

In the case of electric saturation, the by-effects are found to be small, of opposite
sign, and nearly cancelling.

L. Effects of electric saturation

L. Electric saturation in an electric field, i. e. variation of the electric permit-
tivity of the medium resulting from the effect of an electric polarizing field: Aé’.

The first experimental investigation was carried out by Herweg (1920), Kautzsch
(1928) and others. Dipolar liquids, according to their particular properties, exhibit
either ,normal® electric saturation i. e. a decrease in the electric permittivity & under
the effect of a strong electric field, Ae* < 0, or ,,inverse electric saturation, Ae* > 0,
an effect first observed in nitrobenzene by one of the present authors (see A. Piekara
and B. Piekara, 1936). This latter effect has but recently been proved to exist in some



4492 S. Kielich and A. Piekara

other dipolar liquids, owing to the considerable experimental difficulties involved
(see A. Piekara and A. Chelkowski, 1956; A. Piekara, A. Chelkowski and S. Kielich,
1957; A. Chetkowski, 1958). Herweg (1920) was the first correctly to compute the
electric saturation in dipolar gases from Debye’s theory (1912). The theory was deve-
loped to account for anisotropic polar molecules by Debye (1925) and van Vleck
(1932, 1937), and, subsequently, for molecules exhibiting non-linear deformation.
by A. Piekara (1935, 1937). The theory accounting for polar liquids is due to Debye
(1935), A. Piekara (1939 a, b, 1947, 1950), Peterlin and Stuart (1939), Anselm (1944),
Frenkel (1946), Booth (1951), O’Dwyer (1951) Buckingham (1956 a), Schellman (1957)
and the present authors (see A. Piekara and S. Kielich, 1957, 1958; S. Kielich, 1958).
However, the effect of inverse electric saturation found in certain polar liquids is
dealt with in the theories of the present authors (1939 a, b, 1950, 1957, 1958) and
a mention thereof is made by Schellman (1957).

2. Electric saturation in a magnetic field, i. e. variation of the electric permittivity
¢ resulting from the effect of a magnetic polarizing field: A¢™.

This effect has not been observed experimentally in liquids; however, it has been
shown to exist in liquid crystals by Jezewski (1924, 1926, 1929) and Kast (1924, 1927).
Experiments aimed at detecting this effect in pure liquids by one of the present
authors and M. Schérer (1936) only settled an upper limit for A¢™ The theory for
a paramagnetic gas is due to van Vleck (1932), and, for a diamagnetic gas of non-
linearly deformable molecules — to A. Piekara (1935). Recently, the theory of this
effect accounting for diamagnetic liquids was given by Buckingham (1957) and the
present authors (A. Piekara and S. Kielich, 1957, 1958).

3. Electric saturation in an optical field, i. e. variation of the electric permittivity
¢ resulting from the effect of an optical polarizing field: Ae°.

As yet, this effect has not been experimentally detected. However, it is proved
theoretically (see § 6, conclusion), that using modern pulse techniques, the effect
could be made accessible to detection.

I1. Effects of magnetic saturation 1

4. Magnetic saturation in an-electric field, i. e. variation of the magnetic permea-
bility g resulting from the effect of an electric polarizing field: Au®.

The theory of this effect, for the case of a paramagnetic gas, was dealt with by
van Vleck (1932), whereas that of diamagnetic liquids was the object of studies by
Buckingham (1957).

5. Magnetic saturation in a magnetic field, i. e. variation of the permeability u
brought about by a polarizing magnetic field: 4™, and

6. Magnetic saturation in an optical field, i. e. variation of the permeability g
resulting from the effect of an optica! polarizing field: Au°.

Neither of these effects has as yet been observed in dielectric and diamagnetic
media, because of their extreme smallness.
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III. Effecis of optical saturation

7. Optical saturation in an electric field, i. e. variation of the optical refractive
index n resulting from the effect of an electric polarizing. field: Anc.

This effect is usually investigated in practice under the form of electric birefrin-
gence or Kerr’s electrooptical effect (1875). The quantity An’ itself, which is known
by the French term ,,retard absolu®, is also the object of experimental investigation.
Theories of Kerr’s effect for gases are due to Voigt (1901), Langevin (1910), Born (1918,
1933), Gans (1921), Servant (1943, 1950) and Buckingham and Pople (1955, 1956),
whilst theories dealing with the liquid state have been given by Miiller (1936), Friedrich
(1937), Piekara (1939, 1950), Peterlin and Stuart (1939), Anselm (1947), Buckingham
(1955), Buckingham and Raab (1957), and the present authors (1957, 1958).

* 8. Optical saturation in a magnetic field, i. e. variation of the optical refractive
index n resulting from the effect of a magnetic polarizing field: An™.

Tt is the relative effect, i. e. the magnetic birefringence, as detected by Cotton
and Mouton (1907), that is experimentally investigated. The theory of the Cotton-
Mouton effect in liquids is due to Raman and Krishnan (1927), Piekara (1939, 1950),
Peterlin and Stuart. (1939), Snelman (1949), and Buckingham and Pople (1956).

9. Optical saturation in an optical field, i. e. variation of the optical refractive
index n resulting from the effect of an optical field: An°.

Recently, Buckingham (1956 b) pointed to the possibility of optical birefringence
being induced in an isotropic medium by a light beam of very great intensity, and
gave a theory of the effect. The latter, as yet, has not been observed in practice.

It is worth noting that, of the nine effects enumerated, only three, namely, the
first, seventh, and eighth have been experimentally detected and investigated. The
others still remain to be discovered.

The present authors have thus far published theories of five of these effects,
namely a theory of electric saturation in an electric, magnetic and optical field and
of the effects of Kerr and of Cotton-Mouton, respectively (A. Piekara and S. Kielich,
1957, 1958 a, b). The present paper brings a unified, statistical-molecular theory of
all the nine effects for dielectric and diamagnetic isotropic media. The medium is,
quite generally, assumed to be a condensed one, composed of anisotropic polar mole-
cules of arbitrary symmetry, undergoing non-Jinear deformation in an external
polarizing field. The interaction of the molecules of the medium is determined by
intermolecular forces of an arbitrary nature. In the first place, the so-called molar
constants of the various effects will be derived. In turn, the constants will be related
to the variations of the quantities ¢, p and n given by eqs. (1.2) — (1.4). Finally,
the variations of ¢, u and n in nitrobenzene in the six effects as yet not detected are
numerically assessed.

The theory of all these effects, for anisotropic and polar molecules having the
axial symmetry, was presented at the 7-th Colloque Ampere in Paris, 1958
(Piekara and Kielich, 1958 c). : :
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2. The molar constants of electric saturation

Electric saturation in an electric field. Consider an isotropic medium of volume
V containing N identical molecules. The spacial distribution of the molecules with
respect to one another is given by the set of configurational variables 7 = 7 (r, w),
with # = {1}, 75, ... Ty} denoting the positional variables and w = {w,, w,, ... wx} —
the orientational variables of the N molecules of the medium. The latter possess
a permanent electric dipole moment and are electrically, magnetically and optically
anisotropic.

Assume the medium under consideration is acted on simultaneously by an
external electric maesuring field E’ and an electric polarizing field E. In general,
the vectors subtend the angle Q,, given experimentally. The fields applied result in
electric polarisation of the medium as a whole, residing in electric polarisation of the
component molecules. As the medium is assumed to be a condensed one, the distances
separating the molecules are small, and the latter, having undergone polarisation in
the external field, interact by their total (i. e. permanent -~ induced) electric moments,
giving rise to an additional internal field in the dielectric. This additional internal
field superposes itself upon the external field to form the so called local field existing
within each molecule of the dielectric.

Immersed in the local field, the molecules of the medium not only undergo linear
polarisation (determined, in general, by a second order tensor), but are also subject
to non-linear deformation (given by tensors of the third and fourth orders) consisting
in deformation of the electronic shells and in some bending of the atomic bonds.

Hence, the total potential energy possessed by the arbitrary p-th molecule of
the dielectric in the presence of the measuring E’ and polarising E external electric
fields is determined, in tensor notation, as follows:

1

u(t, B, E)® = y(z)® — ( uPFD 4 5 aP PP FD ) —

1 o :
( (P)+ zf?) F(P) + E f;}gp)},ef)];(i)_}_ ) FBEP) o

1

2 ( e(p) + b;;lgp) F(P)+ :;}g?) (P) F(P) +. ) F;EP) F;]('?)—— e (21)

wherein u (7)) denotes the potential energy of the p-th molecule in the absence of
the external fields (B’ = E = 0), u{ — the permanent electric dipole moment of
the p-th molecule within the dielectric, af}”) —- the electric polarizability tensor of
the p-th molecule, and b5, ¢{’ — tensors determining the non-linear electro-electri-
cal deformation of the p-th molecule of the medium, to be termed the tensors of
electro-electrical deformability of the molecule. The above tensors are symmetrical
in all summation indices i, , k, , which assume the values 1, 2, 3. % and F® denote
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the local electric measuring and polarizing fields, respectively, which act upon the
p-th molecule of the dielectric.
The total electric dipole moment of the p-th molecule is given by the relation

du (v, E’, E)®
mi(v, B, B)® = . — "> 2.2)
‘ dFP
which, with respect to eq. (2.1), may be rewritten as follows:
ﬂl; (T, E’, E)(p) — MEP) + a‘(i’) F(P) + 90(?) F(P) F(P) +
\
£ el 1 9
_I__( (p) + b (0) F(P) _+_ 5 fj’glp) F(P) + ”.) FGJ('P)+ .. (2.3)

The electric local fields F{? and F& in egs. (2.1) and (2.3) acting on the p-th molecule
of the dielectric consist of the external electric fields E’ and E, respectively, and of
the internal field arising from the interaction of the molecules of the system with
one another and with the external electric field. The problem, if restricted to dipole
interactions, may be stated as follows

N
F:EP) — E: L Zl ngq) rn;@), F,(,f) — Z T(pq/ me(q) (2_4)
7=

a=1
with m;i(q) denoting the electric dipole moment of the g-th molecule given by eq. (2.3),
and

1
Tg_:q = 5 (rpq ii 3qui rpqi) (2.4&)
Tpq

— the dipole interaction tensor, non-vanishing for p 7% ¢ and vanishing for p = ¢,
r,, = r,— 7, — the vector connecting the centers of the p-th and g-th molecules

r and 7, being their radii-vectors) and &;,; — the unit tensor,
» 7 ij
1 for i =j,
0 = {O for i34 (2.4b)

The next fundamental point of the theory is to calculate the component in the
direction of the external electric measuring field, E’, of the vector of the electric
polarisation P arising in the dielectric from the effect of fields E’ and E, which will
be denoted by Pg.. Applying statistical mechanics to calculate Pg,, and accounting
for the fact that the dielectric consists of N molecules of one kind, one may write

e N,
Pgp = N7a <mE’>E’,Ea (2.5)

wherein

iy = mt (v, B, B® o® (2.5a)
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is the component of the electric moment of the molecule in the direction of the measu-
ring field E’, whereas m{ (z, E’, E) denotes the electric moment of the p-th molecule
given by eq. (2.3), and the a,® are the directional cosines of the angles subtended
by the axes of the molecular reference system attached to the p-th molecule and the
direction of the measuring field E’.

The symbol {m% g, g in eq. (2.5) serves to indicate the mean statistical value
of the quantity m%,, computed when the dielectric immersed in the external fields E’
and E is in thermodynamical equilibrium. By classical statistical mechanics, for
a condensed medium, {mp > p 5 is defined as follows:

N
PIRTCN 9 )
_p=r
fff mi (v, B, B)® o;® ¢ kT dv,dr, ... dty
N
3 us, B, E)P)
=1

fff e kT %drldrr.. drn

wherein £ denotes Boltzmann’s constant, I’ — the Kelvin temperature of the system,
dt, — the element of the configurational space of the p-th molecule of the system;

(2.6)

{mpYpp =

N

Dlu(r, B E)® with u (v, B’ E)® from eq. (2.1) denotes the total potential energy

=1

gf the system in the presence of the fields E’ and E. In the absence of the external
N

fields, D u (r. 0)® = Uy is the potential energy of interaction of the N molecules
=1

of the pmedium. In general, Uy consists of the Lennard-Jones potential, the London

dispersive forces, the energy of the dipolar (Keesom) and inductive (Debye-Falken-

hagen) interaction of the molecules, and of multipole molecular interaction of various

other kinds. '

The calculation of {m§,>p. 5, as defined by eq. (2.6) together with eqs. (2.1)
and (2.3), wherein the local fields are given by eq. (2.4), is generally a rather involved
problem, and, in fact, can be solved for the linear effects of dielectric polarisation
and refraction (see Kirkwood (1936), Fuller-Brown (1950), De Boer, Maasen and
Seldam (1953), Harris (1955), Buckingham and Pople (1955), Mandel and Mazur
(1958)). In computing the non-linear effects, it is necessary to introduce simplifica-
tions; thus, in place of eq. (2.4), the following relations will be assumed:

2 > 2
Feg'p) = Fe “i(p)’ Fg) = Fe “1@)’ ) (27)

wherein F_ and F, denote the mean local electric fields not depending directly on the
configuration of the molecules, and &’ @, a® — the cosines of the angles subtended
by the direction of these fields and the axes of the reference system attached to the
p-th molecule of the dielectric.

Substitution of eqs. (2.1) and (2.3) together with (2.7) in (2.6), expansion in po-
wers of the fields F, and F, and averageing over all possible positions of the p-th
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molecule with respect to the direction of the measuring field yields (see Appendix):

e 1 e i Wi
{mpdp,p = 3 (ai]-(ﬁ,-,- + ﬂk]’lf’ < g’q)>) F, +

14200828, [, e 12u; bflﬁl e (pq) \
+ ——90*”“ {3cnkl 51‘1 Ot + T \ - 6’2/ i

ZCLU akl /Z (3w(1>q) w](lP(I) o 61‘]’ (Skl)\ 4

KT\ /
4(1, 4
kallf;zm /Z (3w(£Q) w;(lpr) 0y w% ))> -+

ML (3 ¢ Z w70l 5 <Z oY w;';>>)= FiF? (28)

wherein the w{? are the cosines of the angles between the i-th axis of the molecular
system of reference attached to the p-th molecule and the j-th axis of that attached
to the g-th, £2,, — the angle between the electric measuring field vector E’ and the
vector E of the polarizing field. The mean values denoted by the symbol << > without
subscripts are those computed in the absence of the external fields (E” = E = 0).
Thus

[f..f (D(t)e 7w drldrz dr 20

[ffe ™ drl d, ... dun ;

is the mean statistical value of the function @ (7) in the absence of the external fields.

In eq. (2.8), the directional cosines w (pq) ... o fixing the orientation of the
axes of different molecular reference systems w1th respect to one another still remain
to be statistically averaged, account being taken of the various types of molecular
interaction implicit in the potential energy U, . This may be effected hy the definition
of eq. (2.9) for special cases if the symmetry and structure of the molecules making
up the dielectric are known.

With the statistical mean {m%,)p g, it is possible to compute the quantity
termed “molar constant of electric saturation in a polarizing electric field* and defined

(P) =

as follows:

~ee 4 IVA

J e
M= g7 Fz {aF <mE >E’ — (Q_Fe’ <mE’>E’,E)E=O}, (2.10)

N4 being Avogadro’s number.
The definition (2.10) of the molar constant of electro-electric saturation S%
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together with eq. (2.8) yields

27 NA
135

\ SM (1 —}— 2 C()bz.Qee) {3623;] + lz'u‘ ]kl /Z w,M) 6k1\ +

/s

2
afj Z Boi? wff? — o 6k1)\ +

ET O\
441, 7 i3
ka /’;leul /Z (3w(Pll) (U;P ) 61']' w(ll ))> +

e fé/}:;m (5 / Z o2 i’z"> Z <"q>\ ¢’ Z 55‘)\)}. (2.11)

The molar constant is, in general, given correctly by eq. (2.11) for condensed
dielectrics (condensed gases and liquids) composed of polar molecules of one kind
possessing symmetry of an arbitrary type and non-linearly deformable in an external
electric field. In the case of a gas, the potential energy of molecular interaction may
be neglected (U, = 0); the statistical mean values of eq. (2.9) then reduce to isotropic
averages, and the following molar constant

ee 2z N, ee 12 ee
ot = g (1 20052 0u) {8+ by 4

sasoay i obtained for a gas:

2 e e 4 € 2 ' .
+ 7= (30’1] a,] - a; a5) + 79 7 (3ai; pi poj — aj; /"'.72) 7373 :“? /‘12 . (212
kT BT kT

The discussion of the equations derived above will begin with that of eq. (2.12)
for gases. The first term therein, 3 ¢f;, is temperature-independent and accounts
for a purely deformational effect consisting in immediate deformation of the molecules
of the dielectric by the external polarizing field E. This effect may be derived directly
from eqs. (2.3), (2.5a) and (2.7) by isotropic averageing only. The second term,
12 p, b5; (kT)™?, which is a deformational-dipolar one, is temperature-dependent and
accounts for the deformational-orientational effect originally computed for gases by
one of the present authors (A. Piekara, 1935, 1937 a b). The remaining temperature
-dependent terms, namely: the purely anlsotroplc term 2(3 af; af; — aj; al)(KT)7,
the anisotropic-dipolar term 4(3 ag; u; 4; — a; #?)(ET)~2 and the purely dipolar term
2 u? p? (kT)3, determine the effect of molecular orientation originally computed for
gases by Debye (1925). This effect had already been introduced into the theory of
the phenomenon of Kerr and of Cotton-Mouton by Langevin (1910) for molecules
exhibiting anisotropy only, and by Born (1918) for anisotropic and polar molecules.
The effect of ‘molecular orientation consists in the following: the molecules of the
dielectric tend to an orientation in which the axis of their permanent dipole moment
and that of their greatest polarizability are parallel to the direction of the electric
field applied, an effect that is counteracted by the unordered, thermal motion of the
molecules. This results in a state of thermodynamical-statistical equilibrium in which
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the molecules attain a degree of ordering, the privileged direction being that of the
external electric polarizing field.

It will be seen from eq. (2.11) for dielectric liquids that the above effects, with
the exception of the purely deformational effect, are intimately related with the mole-
cular interaction existing throughout the dielectric. The latter, in general, is deter-
mined by the mean statistical values of various functions of the directional cosines

o #? of the angles between the axes of the molecular systems of reference attached
to the p-th and to the g-th molecule of the medium. The deformational effects are
generally insignificant and may be neglected in considering polar liquids. In weakly
polar liquids, whose polarizability is strongly anistropic, the purely anisotropic term,
and especially the anisotropic-dipolar term, become important. On the other hand,
in strongly polar liquids, it is the purely dipolar term and the characteristic effect
of molecular interaction related thereto that play the decisive part; if the energy
of molecular interaction is sufficiently great, this effect leads to the change in the
sign of %, as experimentally observed. No such change in the sign of 4 &* is predicted
by eq. (2.12), which holds for gases, and wherein the molecular interaction is not
accounted for (see A. Piekara, 1939, 1950; A. Piekara and S. Kielich, 1957, 1958).
The discussion of egs. (2.11) and (2.12) with respect to the symmetry of the molecule
will be continued in § 5.

FElectric saturation in a magnetic field. Consider a system subjected simul-
taneously to the effect of an electric measuring field E’ and to that of a magnetic
polarizing field H.

+  The potential energy of the p-th molecule of the diamagnetic medium is now given by

|
w (v, B, HY® = y (1)@ — = a,.].@’) F&® FS,?} .
1 )
(uﬁ") + 5 O P Pl + ) FP —

__21_ ( «(p) + L po) g ) FORe 2.13)
wherein af*’ is the magnetic polarizability tensor of the p-th molecule, by and ) —
the tensors of its magneto-electric deformability, and F# — the local polanzmg magne-
. tic field acting on the p-th molecule of the system. The tensor a"‘(") is symmetrical
in the indices i, j, the tensor b{7%? —in j, k, and the tensor c"’"’,gf)um the separate
pairs of indices Z, j and k, L

By eq. (2.13), the following expression is obtained for the electric moment of
the p-th molecule in the presence of the fields E’ and H:

) 1
mi (v, B, B)®) = u® - — b7 Fi) Fill +

1
+ (a?ﬁ-”’ g TR FRFD + . ) PP+ ... (2.14)
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As previously, the statistical average {mg»p 5 is computed from eqgs. (2.13) and
(2.14), and a definition quite similar to that given by eqs. (2.10) yields the molar
constant of electric saturation in a magnetic field (molar constant of magneto-electric

saturation) as follows:

2 em 2 1
nNA { ( 7 + Mk:;:kl < (pq akl>) +

2u; b;
+ (3 cos2 -Qem ,,,,, ]_) |73(jf;:'” LfZ’” —J, lul 7, kRl /Z (Sw(Pq) 6],1 o wg)q) 6kl)> +

kT

CL akl
ij / Z Bl (pq) CO](ibq) 8

i < 5k1)>

B RN Y1 e

wherein £, denotes the angle subtended by the vector of the electric measuring
field E’ and that of the polarizing magnetic field H.
For a gas, this yields

27ZNA

gaSSIi/’In = 1%5 { (li,]]+ leul 1;]]) +

b (3ot O 1) [ 35 el B B +

]' € m e m 1 m b
+ o B dij aij — i af) + 7o (O ity @i — w afj)] } (2.16)

Electric saturation in an optical field. Assume the measuring field to be, as in
the foregoing instances, a slowly varying electric field £, while the polarizing field
is a rapidly varying electric field (whose frequency exceeds that of Debye disper-
sion), i. e. an optical field (excluding, however, frequencies within the range of
optical absorption). The latter will be assumed to be sine variable: &= &, cos 2z v 1,
with &, denoting the amplitude of the vector &, » — the frequency, and ¢ — the

time.

As the period » 1 of the oscillations of the polarizing field is so short that the
molecules are unable to keep pace with its variations, the “effective potential energy®

and “effective electiic moment“ of a molecule of the medium are given by the mean
values of (2.1) and (2.3) over an entire period of the oscillations of the polarizing elec-
tric field applied. The definition of the time mean value of a function of the time:

1

D) = » [ @ (1) dt 2.17)
0
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yields
s 1
& =& Eidy =0, & 6;‘ == 5 Lai laj (2.17a)

and eqs. (2.1) and (2.3), on averageing over the period with respect to the rapidly
varying field, take the form:

Vo 1 e
(@ B 0P = u (@@ — 5 afP FDFD
1, ,
- (MEP) + 5 b1:’](l€) Fo(f) Fa(lf) + ) Fei(p) -
‘ 1 1 7 ?
—5 afj(?) -+ E f;,(kj}) F(P) F\P) € )F @®) F @ (218)

and

RSN 1 5
me (‘L’, E, (z)(P) _ IMSP) N 5 z’0](1’) F(P) F(ﬂ) +

é 1 €0 !
+ < aijgp) 4 ? U’(p) F(p) F(p) N ) Fejgp) + .., (2.19)

wherein af?) is the tensor of the optical polarizability of the p-th molecule, b5 and
cfj"(k"l) — the tensor of its optico-electrical deformability, and F% — the optical local
polarizing field acting upon the p-th molecule of the system. For an optically inactive
substance, the tensor af is symmetrical in the indices i, j, the tensor b“’@) in the
indices j, k£, and cf"(k‘?—ln the pairs of indices 7, j and k, [. The statlstlcal mean value
of the component of the electric moment (2.19) in the direction ef the measuring
field B’ is obtained from eqs. (2.18) and (2.19), using a method explained in the

Appendix, in the form:
g 1
<mE’>E’,€ — = (au 6,] —l— ILLl lu] /Z w(P‘I)\)

+ 90 {3 (2 — COS8 Qeo) (CfZ]] '+' 2#1 ]’kl <Z o ékl )

eo 6/4; kl / (Pq) \
+ (3 cost O, — 1) [3 ity + L o > +
2 Q2 eld®d)

T @0 W30 5, N
T \Z (3o % n) >+

a, r ol 5

with £, denoting the angle subtended by the vectors E” and &.




452 S. Kielich and A. Piekara

The molar constant of electric saturation in an optical field is defined by

Sen:4‘_ﬂNA{‘9
3 F?

By (2.20), this yields

27 Ng e 2p bj?,‘;:l ya (p) "'\
st = {s(c,,,,,+ i (ol ) +

NS 9 AN
S mepdpe — | — {mpdp . 2.21
<9Fe<’ B)E,€ (aFe<mE>E’E)€=0} (2.21)

2o eo 2 1 b?,o‘l ( )
+ (3 cos2,, — 1) [30,-,-, i — Ciigi lukT] A <Z(3w 20 07— w,, S0 6kz)> +

n a; af
lJtTkl < Z Bof® oif? — o 5k1)> 4

a, v r
L g <Z (02?0 — 8, ol >)>]}, (2.22)

For a gas, the foregoing equation reduces to

2a N 2
gasSM 135A {5( u,]] kT Mi l:]l) +

€0 e0 2 €0 eo
+ (3 cos? 2y — 1) [3%, i — Cinii "+ 3 (i bjyij — i bigs) +

1 1 o
+ 75 kT (3(1,1 a’u aj; aj‘"j) + L2 T (Bui pi agj — /'412 a;)]} (2.23)

3. Molar constants of magnetic saturation

Magnetic saturation in an electric field. When a diamagnetic medium is
subjected to the effect of a measuring magnetic field H’ and of a strong electric pola-
rizing field E, the potential energy assumed by the p-th molecule of the medium
immersed in these fields is

1

u (v, B, E)® = u (1) — (uS‘” FP+ 5 ai? FEFS + ) —

1 m 1 me ? ?
. 2 ( (p) + b:']‘f(?) ng) 4 = 2 11,(}5) F(P) F(P) + . ) (17) Fm(JP)___ (31)

wherein bj%? and ¢i%? are the tensors of the electro-magnetic deformability of the p-th
molecule, and F (1’> denotes the magnetic local measuring field acting upon the p-th
molecule of the medlum The tensor b”’e@) is symmetrical in the indices 7, j, and c;;’e;;”

in the pairs of indices 7, j and £, l
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By (3.1), the magnetic moment of the p-th molecule of the diamagnetic medium is

,n;n (T, H’, E)(p) - (a;;l_(P) + b:;‘f(p) F(P) 4

1 e X
+ 5 GRFRFP + .. ) P 3.2)

By eqgs. (3.1) and (3.2) (see Appendix), for a diamagnetic liquid, the molar con-
stant of magnetic saturation in an electric field is

me 2n NA e 2bz sk Ml
Sme 5 { < e, 4. Sk J k# <Z 8 w(pq)>)
(30082 Qe — 1) [3&:;2,, i+ 2b"’k”’ <Z 3oz 0f? — 8 0EP +
au akl <Z (3 w\i’q) ](IPQ) . 6,']' 6kl)> -+
@i; Mk (pg) ( ) qr)
;62 A <Z Bof? wf” — 6, )>]} (3:3)

with 2, denoting the angle subtended by the vectors H’ and E.
For a diamagnetic gas, eq. (3.3) reduces to

27 NA me me_
—Tgs— {5 (cn,ﬁ + kT it, 7 Mz) +

+ (3 cos? 2,,, — 1) [3011,11 c::tfh + 7= kT (303 l]>l Ui — :Ze; %) +

me
gasS =

1 m 1 m m ‘
T (3aZ afj — afj afj) + e B i gy — ag; M;?):“- (3.4)

JWagnetzc saturation in a magnetic field. By analogy, for a diamagnetic liquid,
the molar constant of magnetic saturation in a magnetic field is obtained in the form

mm 2n NA mm
Sm == 135 (1 + 2 cos? L) {301'1']']' +
2a,] a& <Z Boff? off? — 8 5k1)>}v (3.5)

wherein Cipr is the tensor, symmetrical in all indices i, J» k, I, of the magneto-magnetic
deformability of the molecule, and £, is the angle subtended by the vectors H’
and H.

For a diamagnetic gas, eq. (3.5) reduces to

qas S = 2’1‘;;7/* (14 2cos2Q,,,) {3c:’:;'; + o7 (3afj afj—aif a};-‘)}. (3.6)
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Magnetic saturation in an optical field. Similarly, the molar constant of magnetic
saturation in an optical field, for a diamagnetic liquid, is obtained in the form

mo 27'5 Nt mo i e b
M = ﬁ51 {5Cii,ij + (3 cos? 2, — 1) l3cijfij - Cii,oij +

ajy ag,
+ i:Tkl <Z (Swfgq) w](;"l) J— (3,']' 6kl)>:| } ) (37)
q

wherein ¢}, is the tensor symmetrical in the pairs of indices i, j and £, I, of the optico-

-magnetic deformability of the molecule, and Q,,, is the angle subtended by the vectors
H’ and &.

For a diamagnetic gas, eq. (3.7) reduces to

mo 27‘[ N mo mo
gasOM = T,_Sé {5%‘, i+ (3 cos?Q,, — 1) [30;7,017 — Cii,g5 +

1 m 0 m o
+ T Baij aij — a; aj]):l} . (3.8)

4. Molar constants of optical saturation

Optical saturation in an electric field. Assume the medium immersed in a cons-
tant polarizing electric field E is illuminated by a light beam whose rapidly varying
clectric field is the measuring field ¢&. The vectors E and & subtend the angle £2,,.

In the presence of the fields &’ and E, the potential energy of the p-th molecule
of the medium is

€1

w(t, & B = u(r)® — (/I?’)Fg.’) - % ai? FOF® 4 ) —

— é (a}’}") + bED FR) - % FDFDFP + ) FEPF® .., (&1)
wherein b:.’;,(k”) and cf-’;,(,ﬁ) are the tensors of the electro-optical deformability of the p-th
molecule (the former being symmetrical in the indices 7, j, and the latter in the pairs
of indices i, j and k, 1), and F ¥ is the local optical measuring field acting upon the
p-th molecule of the medium.

The tensor of the optical polarizability of the p-th molecule in the presence of
the fields & and E is

d?u(z, &, E)®

I AR 2

“gjgp) (T? E) =
By (4.1), this yields

1
o (v, B) = afP + 055 FR + 5 GRFEFP + ., (4.3)
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wherein a”(P) is the tensor of the optical polarizability of the p-th molecule in the
absence of the electric polarizing field E, and the tensors b"‘(") and c’”(") determine the
direct effect of the polarizing field F on the optical polarlzablhty of the molecule.

The mean statistical value of the optical polarizability of the molecule in the
presence of the electric polarizing field E is defined as follows:

N
= u(T’E>(p)
_p=1__
[[..[ a5 @ E) y@) Po T drd,.. duy

Z u(z, B)P)

ff f *T drydr, ... doy

here, the y{? are the directional cosines of the angles subtended by the axes of the
molecular system of reference attached to the p-th molecule of the medium and the
direction of the optical measuring field &', and u (z, E)? denotes the part of the
potential energy (4.1) of the p-th molecule dependent only on the electric polarizing
field E.

By (4.4), and applying the method explained in the Appendix

{a>g = %_ ai + 9i0{3 (2 ~—cos2 Q,,) (c?iijj + .‘Zbu,kﬂl <Z 8, w(pq)>)
2 o¢ Gb’hk “ (pa)
+ (3cos? 2, —1) | 3] i + <Z O ooy

au akl <Z (3w(PQ) w](fq) 6{]_ 6kl)> +

a, r
;C 2/4; 2,ul <Z (3w(pq) (p0) 8 G )) >] } F:y . 4.5)

The molar constant of the optical saturation in an electric field is defined as
follows:

(a®>p = (4.4

SH= 5 1 (@de— (a0, («6)

yielding, by (4.5), for polar liquids

o€ 27 N, o€ 2bz A
M = TSA- {5 (Cii,jj + } k:ul <Z 511 w(PQ)\)

+ (B eos? 2 —1) [3%,., g+ sty Y‘(3a,k off? — 5 aff®) > +
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au akl Z (3w(1’4) w](fa) . 61’]’ 5kl)> +

z;{ 2/1} p /Z Baf? of? — 8, o) >]} @.7)

and, for a polar gas,

oe 2z N, oe | 2 e
gasSM = "T:Es’sﬁ {5 (%;‘f + o biii Mf) +

+ (3 cos? £2,, — 1) [30:";, i C:’ZJJ + 7= lfT (3bzf,t/‘q zie,j Hi) +

1 o e 1 0
+ 7 (3ajj af; — aj; aj) + e (Bag; i py — ag /hz)]} . (4.8)

" Optical saturation in a magnetic field. By analogy, the molar constant of the
optical saturation in a magnetic field (magneto-optical saturation) is obtained for
a diamagnetic liquid:

o 27 N, - m
‘qA/’In - 135A :5 :)1,]] + (3 COQ Om - 1) I:?)C:’;:lu - C:?iu’:l" +

a,] h <Z (30)1(11;4) w](pq) Yy 5k1)>]}, (4.9)

wherein ¢7;,is the tensor symmetrical in the pairs of indices i, j and , /, of the magneto-
-optical saturation, and £, denotes the angle subtended by the vectors ¢ and H.
For a diamagnetic gas, the foregoing equation reduces to

om 2z N, o om 0
gasSM =5 ~—135A {56,:1” + (3 COS2 Qom — ].) [30,'1" i Cl',':njj +

]‘ 0 m
+ T (3a,, CL,] Qi aji):l}- (4.10)

Optical saturation in an optical field. Finally, the case will be considered when
not only the measuring field &', but the polarizing field & = &, cos 2w v ¢, too, is
an optical field. By averageing the rapidly variable polarizing field, eqs. (4.1) and
(4.3) now yield

w (7, P = u(r)® — —%a;?}f” FRF® | (4.11)
and
,,Oc:?; (r. O)® = (;7](?‘ = 1 f]f(P) F(P) F(P) 4. » (4.12)

2
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wherein af{? and a"’(") denote the tensors of the optical polarizability of the molecule
as relatmg to the optmal polarizing and measuring fields, respectively, and ;5 — the
tensor of the optico-optical deformability of the p-th molecule of the med1um, the
latter is, in general, symmetrical in the first and second pair of indices separately.

By the method discussed in the Appendix, eqs. (4.11) and (4.12) yield the mean
statistical value of the optical polarizability of the molecule in the presence of the
optical polarizing field:

1 o 1 )
{ae = 3 i + 90 {3 (2 — co® Q) ¢ +

+ (3cos2 2, — 1) [ 3¢5%; -+ “i ;fk’ < ) Bof? of? — 5 6kz)>]}??,
: - q

(4.13)

wherein £, denotes the angle subtended by the vectors ¢ and &.

By (4. 13) the molar constant of the optical saturation in an optical field, deﬁned
in analogy to (4.6) is, for a liquid

-0 2 N 0’0 0’0 0’
b/\g = T%SA {56”,]] + (3 cos? .Qoo — 1) [36‘,}; e C,',',a]‘j +
0’1 g
+ 2 <Z (B0 off? — o, ak,)>]}, (4.14)

and, for a gas

w0 2x N, oo 0 ’
gasz/f 135A {SC“’JJ + (Bcos?,, — 1) [36%01/ Cfi,ajf +

1 o o
—|— kT (3(1,] a,] a;; ajj)]} . (4.15)

If the frequency of the measuring field vector &’ and that of the polarizing field
vector ¢ are equall or differ but insignificantly, then a = a and c,] % = Uf}e,, the
tensor iy, being symmetrical in all the indices, and eqs 4. 14) may be written in
the form

w0 _ 21N,
‘SM — 7%’:35‘4 { (]_ + 2 Ccos Qog) Cu]] +
aj;a
4 (3 0082 2yp - 1) ;{Tk’ < (Booit? wff? — 8 6kz)>}, (4.16)

and

0 27 N, 0
gasSIV‘; = T%SA {3 (]- + 2 cos? oo) cn]] + (% cos QOO — ]) (30“17 G;j - a;?i CLZ)}

(4.17)
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Optical birefringence in an electric, magnetic or optical field. It is the molar
constants of the optical birefringence that are usually computed in optical phenomena,
as the molar constants of the optical saturation determine the absolute value of the
effect arising in anisotropic medium subjected to a polarizing field (“retard absolu”)
Thus, e. g., the molar constant of the optical birefringence in an electric field, or the
so-called molar Kerr constant, is defined as

dn NA

By = T Fe {€a®> B, 200 = 00— AV E, 200 = 90°}- (4.18)

or, by definition (4.6)
Bt = Site = 00— Sh,00 = 9075 (4.19)

wherein {a°}> g, _ oo and S37 g, _ oo are the values of (4.5) and (4.7) for Q,, = 0°
i. e. when the vectors &’ and E are parallel, while {a°) go,, - 9o and S37 0., — g0
represent the respective values for 2, = 90°, i. e. when the vectors &’ and E are
perpendicular. .
The remaining molar constants of the optical birefringence are defined similarly:
%% is the molar constant of the optical birefringence in a magnetic field, or Cotton-
Mouton’s molar constant, and Bj; is that of the optical birefringence in an optical
field, or Buckingham’s molar constant (in the paper by Buckingham, the constant
B} is defined differently and hence differs by a factor of /4, see Buckingham 1956 b).
By the foregoing definitions, eqs. (4.7), (4.9) and (4.14) yield for condensed
" media

Bﬁz — 27 NA {302;’1']'_0?5].]‘ + 2bi].’k M /Z (30 w(pq o (S w(Pq))> —i""

15 KT S
a, af
];Tkl <Z (36()(Pq) wﬁ’q)__ OIJ 6k1)>
aj He (pa) (p1) (qr)
1’1;2 T2 <Z (Bewik p 5, — 0; o )>} , (4.20)
om 2z N, om om i - .
B = ==° {3% i — i+ & ,’C;kl C (Beoif? aff? — & 5k1)>}7 (4-21)
q
By — ZlNafs oo oo + i (BwE® wf? — b, b4) (4.22)
M 45 i, if 17,17 LT \ i ij Ukl . .
q

For a gaseous medium, the molar constants of the optical birefringence reduce to

2n N, o o 2
gasBar = ——E—A- {3%", i == Citii + 7 BbTi 15— bif ) +

[ e 1
(3‘1"%'*— @i @) + s (Baij iy — i M;?)}, (4.23)
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om 2m NA om om 1 m

gasBar = a5 {3Cij,ij - G, T+ T (3‘1:"1"11‘1' — af a};)}, (4.24)
00 2n NA oo 0’0

gasBM == 45 {3Cij, if ™ Cii,jj AT (3(1,,] au — g a’]])} (4.25)

Kerr’s molar constant given for a gas by eq. (4.23) consists, in general, of four
terms. The first of these, 3 ¢ff ,;— 7 ., accounts for Voigt’s purely deformational
effect (1901; 1908), and is temperature — independent. As proved by Langevin
(1910), this effect is extremely insignificant in most substances, as compared with
the remaining terms. It is of account in monatomic gases and in substances whose
molecules possess the spherical symmetry (see Buckingham and Pople, 1955, 1956).
The term 2(3 b ; u; — by ; w)(T)™* accounts for Born’s deformational-orientational
effect (1933). The remaining two, namely, the purely anisotropic term (3 af

aj; a;)(kT)~* and the anisotropic-dipolar term (3 ) u; u; — aj; pH)(ET) -2 account
for the Langevin-Born effect of molecular orientation. In liquids (eq. (4.20)), the
latter two, i. e. the deformational-orientational and purely orientational effects are
influenced by molecular interaction. The term 3 ¢, — ¢i";; in the Cotton-Mouton
molar constant accounts for Voigt’s deformational effect, whereas the term (3 af; a7 —
—aj a”)(kT) 1 determines Langevin’s orientational eflect (1910). It will be seen by
(4.21) that, in liquids, this latter effect is intimately connected with molecular inter-
action. The presence in eq. (4.25) of the anisotropic term (3 ai"]f aj;— al al) (k7)1
points to the fact that the polarizing optical field also tends to order the aniso-
tropic molecules, thus causing the isotropic medium to become optically anisotropic,
with its optical axis parallel to the oscillating electric vector of the optical polarizing
field. In a condensed medium, by eq. (4.22), this effect of molecular orientation is
modified by molecular interaction. Moreover, by eqgs. (4.22) and (4.25) it will be seen
that in the present case, too, there is a purely deformational effect described by the
term 3 cl] i ".;» an effect that is independent of the temperature and of molecular
interaction (see Buckingham, 1956 h).

5. The molar constant of the nine effects of saturation, computed for some special
cases

In §§ 2, 3 and 4, general expressions for the molar constants of the nine satu-
ration effects originally enumerated have been derived without any assumptions
whatsoever as to the symmetry of the molecules and the nature of the intermolecular
forces. Now some special cases will be considered.

Spherical molecules. If the molecules of an isotropic medium possess the sphe-
rical symmetry, the tensors of odd order vanish:

k()b Abukf...:O

whereas those of even order reduce to isotropic tensors given by the following relation-
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ships:

1
G = 5 ¢ (8 Ot + Oip 01 + Oi1 Ogs)s

Gim = % 05 0 + ¥ (O O + 031 0y)- (5.1)

To simplify notation, the non-vanishing components of the last tensor, which is iso-
tropic of order 4, will be written as follows (see Buckingham and Pople, 1956):

Ci],kl:x_}_z}'j(f[!g fOI‘L:]:k:lQ

Cij,kl:x:c_l_’ fOI'iZj, kzl,
1 - . ' ,
i =Y =g (¢ —cyp) fori=*k j=1L1 (5.2)

All tensors, a;;, ¢y and ¢z » as well as the corresponding scalar values a, ¢, ¢, and
¢, should be provided with upper indices explaining the nature of the measuring and
polarizing fields, respectively, e. g. aj;, a®, ¢fi"y , ¢f", ¢T" etc. The scalar coefficients ¢
and ¢, (with suitable upper indices) denote the electric, magnetic or optical deforma-
bility of the molecule in the direction parallel or perpendicular to that of the polarizing
field, the nature of which is made apparent by the second upper index.

By (5.1) and (5.2), the general expressions derived in §§ 2, 3 and 4 giving the
nine molar constants of saturation assume the following form valid both for gaseous
and liquid media:

L NA (1 4 2 cos? Q,) e,
sgp— 2% NA {7 4 265" 4 (3 c0s? Qom — 1) (" — ¢} (5.3)
sip =2 NA {eff + 26T + (3 cos® 26— 1) (cff — eI}
st = 2N (e 2l 4 @ o 03— 1) (F — ).
S — 2“N” (1 + 2 cos? Q) ™™,
538 = 22N (e 26 - (3 cos® Q1) (6 ). (54)

0 2 N e O
Sit = _7'5__,1 el + 2¢T + (3 cos? 2,, — 1) (cff — )},
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2
SS9 — nNA {cI" + 2T + (3 cos? — 1) (" — T}
St = 2nNN (1 + 2 cos? 2,,)c0. (5.5)

The foregoing molar constants of saturation contain only deformational terms
independent of the temperature and of molecular interaction. This is indicative of
the fact that in an isotropic medium composed of spherical molecules the saturation
arises solely and exclusively from nonlinear deformation produced in the molecule
through the direct agency of the strong external polarizing field.

In the present case, the molar constants of the optical birefringences (4.20) —
— (4.22), by (5.1) and (5.2) assume the form .

B%[ ZnNA(

om ZnN
By = A — <y,

00 2n N, oo 0’0 (
By = SA(CH ——-CJ_). (56)

Thus, an isotropic medium becomes optically birefringent although its molecules
are spherically symmetrié¢. In this case, the medium exhibits anisotropy only because
the strong external polarizing field induces the anisotropy directly in the molecule.
This is precisely Voigt’s deformational effect (1901, 1908), which, it will be remem-
bered, is extremely small as compared with the orientational effect existing when '
the molecules are anisotropic or polar anisotropic.

Polar-anisotropic molecules. For strongly polar anisotropic molecules, the small
deformational effect may be neglected, i. e. the problem reduces to the effect of pure
molecular orientation which now is the only one to play an important part. The nine
molar constants derived in §§ 2, 3 and 4 now reduce to the following six:

e 2 N4 2aj; akl

4'a Br (1 7 T
e (X ool P >>>

RO SO ST N

grs

aj; ag q N
(3 cos2 Q,, — ){ l]chl < (Bl )wfzpq) —- 0y 5kz)/\f -+
q

+ aA]zM ;5 ’< Bof? o — o; wﬁg”)>}, (5.8)

qr

27‘6NA

Sit = S = 35"




462 S. Kielich and A Piekara

e0 eo an ‘ a:. (Lo
Si =St =220 0052930_1){ L <Z (3e? wjf’q>~_a,~,~ak,)> 4+
q
a,,ukm PR INPRC)
- Sl <Z (B0? o — o wff >>} (59)
mm TN 4 . 2 ajj ag / W29 0 AN
So’ = 135 (1 + 2cos20,,) T \ Wiy Wy —5i,'5kl)/’ (5.10)
27INA

Spe = S3 =

T (3002 2y, — 1) “';C;fk’ <Z B 0f? — 0, 0) >» 611)

2w N
4 = 137 (Beost 2, — 1) % ““<Z BoE? off? — o, 6kz)>. (5.12)

The foregoing molar constants, in general, account for nine effects of molecular orienta-

tion produced within the condensed medium by an electric, magnetic or optical
polarizing field.

If the polar and anisotropic molecules possess the axial symmetry, and if the
axis of symmetry is the 3-axis, then

=y =10, us7 0, ai =ajj=al;=0 for i
e ___ é e m m m o ___ o [
ayy = Qa7 G33, G} = Qg7 A5y, Q) = A7 agy. (5.13)

Now, by the general formula of the directional cosines of the angles between
the axes of the particular molecular systems of reference:

for g=r

b,
() . (or) _ J%ij
0P of {ngqr) for g 1, (5.14)
eqs. (5.7) — (5.12) yield (see Piekara and Kielich, 1958 c¢)
47:NA 23 Fe 43¢ 3
. s e SZ
135 (L 20?8 ( wr Row+ g B g ks
(5.15)
vem ~me 4‘7ENA t% r./lf Jg ‘ua
Sif = Syt = T35 (3cos2Q,,, — 1) ( Rem + = T RK) (5.16)
€0 0e dm N 4 : Je #e Fe M3
L,SM = Oy = 135 (3 52!220 — 1) < ET RCM + ]{,’2 T2 RK> (517)
Sy = 8’1’%“‘ (1 + 2 cos? Q,,,) T ""% Rewm s (5.18)
spo . xgm = A ‘z“‘ (3 022, — 1) ng /ﬁ" Row » (5.19)
sgodmNag eg R (5.20)

135 kT
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wherein the quantities
gre ___ € € gyrm ___ m m o __ (4 o
A= ay—ayy, A" =dp—aly, X°=a3—af, (5.21)

are the anisotropies of the electric, magnetic and optical polarizabilities of the medium,

respectively.
The quantities R¢yy, Ry and Ry in egs. (5.15) — (5.20) are respectively of the form

Lt 2 @va) N
Rem = \Zq (3 o2 600 — 1), (5.22)

Ry = % <Z (3 cos OP8 cos O cos@(‘?'))>, (5.23)
qr

1 / s \ /
Rs= 5 (5Y cos 000\ 'Y eos 0N, 3 N cos 009 cos 0\ | |
: 2(2 /\Zab >3 /

qrs

(5.24)

with 69 denoting Lhe angle subtended by the axes of symmetry of the p-th and ¢-th
molecules of the medium, while the mean values symbolized by the brackets < >
are those defined by eq. (2.9). The quantities Ry, , Ry and Rg account for the effect
of the molecular interaction of molecules possessing the axial symmetry in a medium,
and will be termed correlation factors.

Thus it results for the important case of a medium the molecules of which are
axial symmetric that the effect of the molecular interaction in the nine molecular orienta-
tional effects under consideration is accounted for completely by the three correlation
factors Ry, Ry and Rg. This is a fact of great significance in comparing the theory

proposed in the present paper with the experimental results (see the following § 6). /

The correlation factors Ry, Ry and Rg in the form of egs. (5.22) — (5.24) have been

derived and discussed for some special models of molecular interaction in earlier

papers (see Piekara and Kielich, 1957, 1958 a, 1958 b; Kielich 1958).

In particular, for the model of dipole pairwise interaction originally proposed
by one of the present authors (see Piekara 1937, 1939, 1950), the correlation factors
assume the form

L L
Rom=2-—3~, Rg=2-32= 42,
cM ¥ K ¥
- ) | F
Rs =6~ — (L 5L) (1 5 L), (5.25)

wherein L = L(y) is Langevin’s function, and y = WIkT the potential energy
of interaction of a pair of dipoles in %7 units. The upper and lower signs account
for the cases of a pair ot dipoles tending to the parallel and antiparallel orientation,
respectively.
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It should be stresses that the foregoing model is in itself adequate for explainifig
theoretically the change in sign of the electric saturation effect produced by an external
electric field in polar liquids, as experimentally observed (A. Piekara, B. Piekara,
1936). Namely, in strongly polar liquids, the purely dipolar term predominates;
then, by (5.15), )

li% 4 NA
135 /s‘”’ T3

If the interacting dipoles tend to the antiparallel orientation, and for the value y > 1.33

(1 4+ 2¢c0s20,,) ——= (5.26)

ce
dipS —

of the interaction energy, the correlation factor Rg changes its sign becoming negative
and, hence, the molar constant of saturation (5.26) becomes positive.

If the potential energy of the molecular interaction may be neglected, Uy = 0,
we have

Ry = R = Rg =1, , (5.27)

and eqs. (5.15) — (5.20) assume a form that holds for gaseous media.

6. Relation between the measured wvariations of &, u and n and the molecular
constants

General relationships. By the first of eqgs. (1.1) and by (2.5), the following general
equation for the electric permittivity of a medium as measured by the measuring
field E’ in the presence of a strong electric polarizing field E is obtained:

N 9
g—1= 4%7 5 {miYe.E- 6.1)

wherein {m. >, ; denotes the mean statistical value of the component of the electric
moment of a molecule of the dielectric in the direction of the field E’ as defined in
general by eq. (2.6) and given, on computing, by eq. (2.8).

Thus, for polar liquids, egs. (6.1) and (2.8) yield

. 4, N OF /“l M/ (pq)\
g —1=dn = { 3kT\Zw

2 a2
R [3 ity IR SN 005, 4

90 AN /
q
2aj; aj
+5r X Geltelf b, o) > +
4‘“1 7 < )
]:Zﬁ;fzﬂz /2 (30)("") wﬁp) E wiqz >)> +

PR (1S s -5 (Sl (L )] )

” (6.2)



Theory of Saturation Phenomena 465

with a® = % af; denoting the mean electric polarizability of a molecule in the medium
in the absence of a polarizing field.

In particular, the electric polarizability of a medium, measured in the absence
of a polarizing field (E = 0), is obtained in the form

N (e 1 tats (20) oF,
e—1=dn - (a + 3]{'T \ Wy > BYR E=O' (6.3)
q s

Eqgs. (6.2) and (6.3) together yield the variation of the electric permittivity of
the medium as arising from the effect of a strong electric polarizing field E, i. e.

Ae® = & — ¢. Restricting to small values of A¢® and neglecting electrostriction
and the electro-caloric effect, by eq. (2.11) the true effect of saturation is

. A\t oF, S¥ e
Aelyy = 3 (1 oee)se A (6.4)
with
N e ity /N 0\ -
fo=Adn ( + AN ,)E,, 6.5)
q

M
and Vi, = o denoting the molar volume (M — the molecular weight and ¢ — the

density of the dielectric), while S4; is the molar constant of the electric saturation in
an electric field, as given by the general eq. (2.11). Thus, a general expression relating
Ae,, and the molar constant S in the case of electric saturation in an electric field
has been derived.

The expressions relating the variations of &, x4 and n given by egs. (1.2) — (1.4)
and the respective molar constants computed in §§ 2, 3 and 4 are derived by analogy
for the remaining eight effects.

In this way, neglecting the terms in the fourth and higher powers of the polarizing
fields, the following set of equations accounting for all nine effects is obtained:

Age, = S® B2, Agh, = S™H?,  Ae%, = S% I3, (6.6)
A:”'.faz — Sme Ez’ Aﬂ:’;t = Gmm 1'_[29 Aﬂgat — Smo Zi, (67)
Ay = S B, A@wdn, = S™H,  Awnd), =S, (68)

wherein specific constants of saturation 5%, S, ... S° have been introduced, which

are related to the molar constants S%, ... S% computed in §§ 2, 3 and 4 by the following
equations:

Sex Smx Sax
Sex — Jgex M , Smx — Jgmx M Jox ox DM 6.9
7 g 7 S 3¢ 7 (6.9)
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here, the place of the index x should be filled in with one of the letters ¢, m or o,
according to the kind of polarizing field considered. The parameters ¢, ¢"* and ¢
are given by

ge* — (1 3—’;)2 32’ (%)2 (6.10)
f, being determined by eq. (6.5), while
fm:ém%am%, f‘,=4n]7Vao§—§, (6.13)

with @” = § aff and a° = } af; denoting the mean diamagnetic and optical polariza-
bility, respectively, of a molecule of the medium in the absence of a polarizing field;
X is the intensity of one of the external polarizing fields, and X; — that of the local
polarizing field arising within the dielectric through the effect of the external field X.
Computation of theoretically predicted values of as yet undetected cffects. The
effects A(n?)¢,,, A(n?)7, and A&, have been detected experimentally and investigated
for some time (see Introduction). All the remaining effects given by eqs. (6.6) —
(6.8) still await detection and experimental investigation. Thus, it may be useful to
assess their respective numerical values from the present theory, using the experi-
mental values of the constants 4(n?), and 4(n?)™, of the known effects. The latter
are those of Kerr and Cotton-Mouton, for which the respective constants of birefrin-
gence K and C are defined by
mp—ng Loy 1 (6.14)

K= n E2’ ' n oz’

wherein n, and n | are the values of the refractive indices for the vector of the mea-
suring field parallel and perpendicular to that of the polarizing field.
By egs. (6.8),

1 oe 10€ ' 1 om Y om
K=373 (Sif —51), C= ﬁ( i —ST)s (6.15)

alternatively, by eqs. (6.9) and (4.19),

30* By . _ 30™ B (6.16)

with B¢ and B3 denoting the molar constants of optical birefringence in an electric
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or magnetic field, as given in general by eqs. (4.20) and (4.21), while ¢* and ¢
are the parameters determined by eq. (6.12). All parameters o™, ... ¢* appearing
in the foregoing equations may be computed theoretically from their definitions
(6.10) - (6.12) assuming for the medium under consideration the appropriate model
of the local field existing therein.

Assuming the model of Lorentz (1916), the local fields are of the form

2
Fe = Ea Fm == H_;!___%H’ Fa = ~ szﬂ (6’17)

whence

e

3
2 2
e (£ (22

3
v _goe — (P 2) (e 42)° (6.18)
[0 = ¢ = 3 3 . .

If considerations be restricted to the purely orientational effect and to molecules
possessing the axial symmetry, eqs. (6.6) — (6.8) together with (5.15) — (5.20) may
be expressed by the constants K and C of (6.14) — (6.16). Thus, assuming the Lorentz
model (6.17) and (6.18), the equations yielding the six effects as yet experimentally
not detected take the form

2n2 fu+2\% m
Aegr = (3 cos? 2, — 1) 3 (n2 T 2) %o KH?, (6.19)
n2
A&far = (3 cos? Q,,— 1) + K2, (6.20)
202 [ p42)\2 gm
e — 2 — = oy 2
Alar == (3 0052 Qe — 1) =3 (——_n2 - 2) oo KE?, (6.21)
2 2 m
Aty = (14 2 cos? Q) 33”— ( :2‘:22) go cH, (6.22)
2
A = (3 cos? 2, — 1) % cez, (6.23)
2
0 = 2 I N w _‘%i 2 4)
Ansat (3 cos Qoo 1) 6 <M+2 o C(za, (6.2)
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where:
o (1222 (e + 2 By ‘
K= 7 (6.25)
P9+ B
C = . .

The effects defined by eqgs. (6.19) — (6.24) will now be numerically evaluated
for nitrobenzene from the experimental data at 20° C:

e = 34.3, n? = 243,
H° =73 X 107%, #"=1.3 x 1072,
K =13x%x109% (€ =93x 101
With the Lorentz model, eqs. (6.19) —— (6.24) vield
Ael, =18 (3cos?2 2, — 1) X 10714 H2,
Aeg, = 1.2 (3 cos? 2, —1) X 107952,

: sat

Aps,, = 1.8 (3cos? 2, — 1) x 10714 2,

ApZl, =14 (1 + 2 cos22,,,) X 10721 []2,

Aps,, =083 cos?2 2, —1) X 1016 22,

Ang, =31 (3cos? 2, —1) x 107122, ' 6.27)

sat

From this set of formulas it may be concluded that, using modern equipment,
it should be possible experimentally to detect the effects A&™, and Ae?,,, besides the
one, AnJ,,, already predicted by Buckingham (1956). As a matter of fact, for nitro-
benzene subjected to the effect of a magnetic field of 4 x 10% Oe parallel to the electric
measuring field, the theory yields a value of Ae”, = 6 X 1073, This represents an
effect accessible to measurement, though the difficulties to be overcome are very
great considering the simultaneous by-effects (as, e. g. the rise in temperature of the
liquid brought about by the eddy currents in the condenser plates). Such experiments
are being performed in this Laboratory, using modern techniques.

The second of the effects accessible to detection, A¢2,, amounts to as much as
1x107%if £2 = 4.2 103 erg/cm?, i.e. if &, = 19.5kV/cm. An electromagnetic wave beam
whose electric vector is of such great intensity should have energy density amounting
to £ £2/8x or a luminous flux of (cn/8n) &2 = 108 W/cm?. The latter could be obtained

only as a short flash, by discharging a high voltage condenser battery through a gas.

Appendix

The rather involved calculations in the method proposed by the present authors
will be exemplified by one of the consecutive steps, namely, the one leading to the
computation of the statistical mean value of the component of the magnetic moment of
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14
a molecule of the diamagnetic medium in the direction of the measuring field H’,
in the presence of an electric polarising field E:
N
X u(e,w,E)D
_ 2=l

fff m (7, ', E)® B e N dry dz, ... din

N
S uzm,p)®)

ff...fe— = kT dry dr, ... din

here, m (v, H’, EY*?) and u(z, H’ E)® denote the magnetic moment and the potential
energy of the p-th molecule of the diamagnetic medium as given by eqs. (3.1) and
(3.2), respectively. The directional cosines of the angles subtended by the axes of the
molecular system of reference attached to the p-th molecule of the medium and the
direction of the magnetic measuring field H’ or of the electric polarizing field E are
denoted by g and ), respectively.

Assuming, by analogy with eq. (2.7), that

,P _ 2 . )
Fmi) - Fm ‘ng)v Fg") - Fe agp),

and on expanding in powers of the magnetic and electric fields, eq. () yields

<mH’>H’,E =

;0 (D

mipd g = af® B0 BPY B+ ..+ % {<c:75§£> B BY ol oy +
. ITZT— ( < Z BP0 B g2 o) agq)> Y Y CHEN < Z e agq)>) X
q q
+ % ( < 2 a1 g0 P G 0 0654)> - (alP gP y < ; 449 @ “gq)>) i
+ ;zl—fz ( <Z i u® uf? P P P a?’)> —

qr

—aPBOES i ol -
qr
; * o(p) / @)\ v
+ 2 {ai® P B /\; i o > <Z i’ ac?"> —

—2./\" al’® 150 g ®) DN “’rx(')\, F,F*p .., 1I
\;/Mklg i k/\Zﬂl l/ + (I1)

wherein the statistical mean values symbolized by the brackets < > are those com-
puted in the absence of external fields (H’ = E — 0), and are defined by eq. (2.9).

In the absence of external fields, the various orientations of the p-th molecule
with respect to the laboratory referential of the medium are all equally probable.
Hence, in the expansion (II), it is permissible to average the directional cosines &,
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af” separately and isotropically over all the possible orientations of the p-th mole-
cule of the medium with respect to that system of reference. To do this, the directional
cosines of the g-th and r-th molecules should first be expressed as functions of those
of the p-th molecule by the transformation formulas

“%q) — wg;;eq) ocf,’”, “gr) — wﬁ’l") “5P)§ :

in the case under consideration, when the molecular systems of reference attached
to the various molecules are rectangular, the coefficients of the transformation: (%2,
%", have the meaning of the cosines of the angles subtended by the axes of those
systems. Thus, e. g., 0P is the cosine of the angle subtended by the g-axis of the
molecular systems of reference attached to the p-th molecule and the k-axis of that
attached to the g-th.

By the foregoing transformation formulas and by eq. (5.14), the isotropic mean
values of the functions of the directional cosines are

0P = fP = P P o@ = ... =0,

1
ﬁ(p) (#) __ _3_ 5:‘;" agq) a(r)

1
= 55 12(
+ (3 cos? 2, — 1) (0 0 + o i)}, (I1D)

wherein §;; is the unit tensor of (2.4b), while £, , is the angle subtended by the vectors
H’ and E.

With (IIT) and eq. (5.14), the expansion (II) takes the form

m L e, 2b%
{m)w, B = 3 aff Fp + o {3 (2 — cos2 R, (c“,” 4 lfﬂ’i“’ <Z 6,]a)(‘;‘1)>)

me | ObL;
+ (3cos2 82, —1) [3ci]~, i+ ~—;C—;,'u—l <Z Oix OJ,fq)\ —+
q

au ay <Z 3 i wj(fq) & 5kl)> +

at;c 2:“]’:2/“ / Z (Sw(Pq) (PT) 6{] w(qf))>]} F F (IV)

With the molar constant of magnetic saturation in an electric field defined as
follows:

1
qr
Wkl

3

‘851’) ﬁ(Q) IGINO) (S) 9(2 — cos? Qme) wgfq) (ﬂ) +

4~7ZNA & o
| ot (g o) ) ™)

eq. (IV) yields eqs. (3.3) and (3.4).
The molar constants of the remaining eight effects are computed similarly.

Sii =
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