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A consistent molecular theory of the non-linear effects of molecular orientation
' produced in dieleciric gases and liquids by electric and magnetic fields is given by the
authors. The molar constant of dielectric polarization Py, the Cotton-Mouton constant Cyy,

the Kerr constant Ky, and the dielectric saturation constant in an electric field Sf‘ff, and

in a magnetic field, Sf‘? have been calculated for gases (§ § 3 and 4) and for liquids (§ § 5
and 6). For liquids with molecules possessing axial symmetry, the correlation factors
Rp, Rcpg, R and Rgassociated with the five constants determining molecular interaction
within the liguid have been obtained. In calculating these factors, no special assumptions
concerning the nature of the intermolecular forces were introduced. The factors are given
in the form of functions of the angle @pq between the axes of symmetry of the p-th and
that of the ¢g-th molecule. In the case of dipole pairwise coupling of the molecules, formulas
deduced previously by one of the authors and accounting, among others, for the inversion
of the dielectric saturation (§ 7), are obtained. Finally, a relation connecting the variation

of the dielectric permittivity in a magnetic field, 4 ¢4, and the Kerr or Cotton-Mouton

constant is derived, and the order of magnitude of 4 iy, is evaluated.

1. Introduction

'The -present paper is intended to deal with certain phenomena of molecular
orientation in dielectric liquids subjected to the effect of external electric and magnetic
fields. We shall consider the following phenomena: dielectric polarization and its
saturation in an electric and magnetic field, as well as birefringence in an electric and
magnetic field (the Kerr effect and Cotton-Mouton effect, respectively).

The theory of dielectric polarisation, the foundations of which, as applied to
rarefied media, i. e. gases, vapours and dilute solutions, is due to Debye (1912)
has been generalized for condensed media, i. e. gases under high pressures, concen-
trated solutions and liquids by a number of authors, and fundamental papers have
been published by Debye (1935) and Fowler (1935), Onsager (1936), Kirkwood (1939)
and Frohlich (1949). Debye, as well as Fowler, introduce coupling of the molecule
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under consideration with the surrounding medium of a quasi-crystalline type. Denoting
the energy of coupling by W cos @, wherein @ is the angle between the direction
momentarily privileged by quasi-crystalline ordering in the environment of the mole-
cule under consideration within the liquid and that of the dipole, the part of the polari-
sation due to the dipoles is reduced in the ratio Rp: 1, the reduction factor R, being
given, for Debye’s model, by the relation

Rp=1—1L2(y), (L.1)

with y = W denoting the energy of coupling, and L — Langevin’s function

w
kT’
of argument y.

One of us (Piekara 1938) has shown that, in the case of nitrobenzene, coupling
with the momentarily nearest molecule plays a greater part than quasi-crystalline
coupling with the medium (Debye-Fowler coupling). If coupling with the momentarily
nearest molecule of the same kind tends to produce pairs of almost anti-parallel
dipoles, then the following relation is obtained for the reduction factor:

Rp=1—1L(y), (1.2)

g , and W denotes the energy of coupling with the nearest molecule.
This relation has also been proved to be correct by Anzelm (1943). Kirkwood applies
a macroscopic method to account for short range interactions, and subsequently the
method was brought to a high degree of generality by Frohlich. According to their
theory, the mean polarizability of a molecule (&) may be written in the form of the
sum of the induced polarizability and the mean orientational polarizability:

wherein y =

<“e> = q¢ _|_ 3 kT ‘ (]..3)

wherein a* denotes the mean polarizability of a molecule in the condensed-medium
system, u——its dipole moment when within the medium, and u* — the moment
induced in a macroscopic sphere by fixing the orientation of one of its molecules.
If the short range interactions may be neglected, we have u* = u and the Kirkwood-
Frohlich theory yields results in agreement with that of Onsager. In the case of A. Pie-
kara’s model of molecular interaction we have

a) = a* + 54 3 T Rp, (1.4)

with Rp, given by (1.2). It is the aim of the present paper to calculate Rp in general
terms with the fewest possible assumptions as to the mechanism of molecular i interaction
and the nature of the forces.

In the second place, the aim of the present paper consists in calculating
the dielectric saturation, both in an electric and in a magnetic field.
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It will be remembered that the dielectric saturation in an electric field (simply:
dielectric saturation) resulting from Debye’s theory (1939) had been calculated for
polar gases by Herweg (1920) and subsequently measured in ethyl ether by the same
author; his results were corroborated by Kautzsch (1928). The effect is to be observed
as a fall in the dielectric permittivity on placing the medium within a strong electric:
field, the direction of which is parallel to that of the A. C. measuring field. The inverse
saturation effect consisting in a rise in the dielectric permittivity was found by A. Pie-
kara and B. Piekara (1936) in pure nitrobenzene. A theoretical explanation of the
latter, uncommon phenomenon (Piekara 1937a) has been given on the assumption
already presented here, namely, that the most effective of molecular interactions is
the coupling between the molecule and its momentarily nearest neighbour. With
this assumption the following relation is obtained: ‘

2 .
{at) = a +§% Rp+3(OY Rom+2 07 Rk — @5 Rs+ ..)F2,  (L5)

ut
45 B T8
Assuming for nitrobenzene, as above, that interaction tends to produce approximately
anti-parallel pairs of dipoles, we obtain

RS=6JL7—(1 +5I)- (1—L). (1.6)

wherein the term — @ Rg = R dominates and accounts for saturation.

According to this formula, Rg changes its sign, becoming negative for y > 1.33, thus
accounting for the inverse saturation effect increasing the electric permittivity of the
liquid for sufficiently strong coupling. Recently, the inverse saturation effect has
been found in certain liquids other than nitrobenzene Piekara and Chelkowski
1956, Piekara et al. 1957).

Both theory and experiment prove that the reduction factors, in some cases,
may take values larger than unity. Therefore it will be more correct to term them
“correlation factors®, because their appearance in the expressions giving the molar
constants accounts for spatial and directional correlations of the molecules.

Generally, for strongly polar liquids the first two terms within the brackets in
(1.5) are small as compared to — &% Rg. The first of them, @f R, is a purely
anisotropic term (cf. § 3 and 6) containing the correlation factor Ry, playing an
important part in magnetic birefringence, i. e. appearing in the molar Cotton-Mouton

constant. The other, namely 2 @ Ry, is a mixed anisotropic-dipolar term; it contains
~ the correlation factor Ry appearing in electric birefringence, i. e. in the molar Kerr
constant. Besides these and the purely dipolar term — @% Rg, the bracket in (1. 5)
contains deformation terms accounting for deformation of the molecule in the electric
field. The necessity of taking electric deformation into account when considering
dielectric saturation had been previously proved by one of us (Piekara 1937b, 1937c).
Subsequently, electric deformation was considered by Buckingham in a number of
papers (1956). In the present paper the authors consider both electric and magnetic
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-deformation with simultaneous existence of molecular interaction in the condensed
gystem.

The theory of dielectric saturation has been the subject of a number of papers,
amongst others by Booth (1951) and Schellman? (1957). The latter author restricts
himself to the purely dipolar term which is definitely calculated on the assumption
of a specific interaction model, wherein two molecules being the neighbours of the
one under consideration do not interact with one another. In the theory presented
in this paper the general formulas for the correlation factors have been obtained
without making any special assumptions as to the mechanism of molecular interaction;
solely concerning the form of the molecules it has been assumed that they may be
considered to be axially symmetric. :

Dielectric saturation in a magnetic field has not yet been shown to exist in true
liquids?. Efforts in this direction by A. Piekara and M. Scherer (Piekara and Scherer
1936, Piekara 1936) resulted only in establishing an upper limit of the effect for
several liquids. Investigations are being carried out with modern means. The theory
of the effect for paramagnetic gases was given by Van Vleck (1932). The authors’
theory of dielectric saturation in a magnetic field covers liquid dielectrics, that is,
diamagnetic substances. Deformation of the molecules in the magnetic field and
molecular interaction in the dense phase are taken into account. The theory gives
insight into the connection existing between the effect of dielectric saturation in
a magnetic field and birefringence in an electric and magnetic field and thus makes
it possible to predict the effect numerically®. ‘

Finally, the two remaining effects to be accounted for by the present theory are:
birefringence in an electric field (the electro-optical Kerr effect) and in a magnetic
field (the Cotton-Mouton effect). The theory of these effects, based on ideas originating
in papers by Cotton, Langevin, Debye and Born (Born 1933), applies to gases. However,
on passing from the diluted system, e. g. a solution of nitrobenzene in a non-polar
solvent, to the condensed one, i. e. to the pure liquid, the molar Kerr constant is found
tod iminish abruptly, whereas the molar Cotton-Mouton constant rises to almost twice its
previous value (strictly 1.75) (Piekara 1939). One of us has given an expla- nation of
this behaviour of the molar constants based on the above mentioned model of molecular
interaction in nitrobenzene (Piekara 1947, 1950, 1951). Here it is the authors’ aim to
calculate the molar constants of both birefrigences, accounting for deformation of
the molecules in the eleciric and magnetic field and molecular interaction in the
condensed phase, without introducing any special model. Interesting papers on both
effects have been published by Buckingham (1956) and Buckingham and Pople (1956).

! One of us (A. P.) expresses his indebtedness to Dr. Schellman for sending him a typed copy of
a paper previous to its publication.

% In the case of liquid crystals the effect was discovered by Jezewski (1924, 1926, 1929) and Kast
(1924, 1927).

3 Cf. Piekara and Kielich (1957); quite recently similar results have been obtained by Buckingham
(1957).
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An account of some of the results of the authors’ theory, not comprising, however,
molecular deformation, has been published in “Le Journal de Physique et le Radium®

(1957).

2. General assumptions of the theory

Let us consider a given volume / of the dielectric containing N molecules of the
same species, the positions and orientations of which are given by the variables
7 = 7 (v, ®), v being the positional variables in Cartesian coordinates %, ¥, z and @ —
the orientational variables in Euler’s angles &, @, . The molecules of our system
possess a permanent electrical dipole moment, and are electrieally, magnetically and
optically anisotropic.

If the system is subjected to the effect of an external electric field E, each molecule
undergoes the action of electric forces, besides that of molecular forces. Among the
latter we distinguish short range and long range forces. In general, the forces of both
kinds are of an extremely complex character.

The electric forces comprise the external field E and the field arising from
polarized molecules in the system. The field considered to consist of the external
electric field E and of that arising from remote polarised molecules treated as a conti-
nuous medium is termed the local electric field. The latter is generally anisotropic.
However, the anisotropy may be considered to recede before the directional inter-
action of the neighbouring molecules. The local field will be therefore assumed
isotropic; on the other hand, the treatment of the more important direct mutual
molecular interaction is entirely free of simplification.

The molecular forces are themselves strongly dependent on the distances separat-
ing the molecules and on their spatial orientation. The significance of these forces for
all effects of molecular orientation in condensed systems, e. g. in liquids, is of import-
ance; in perfect gases or in diluted solutions they may be neglected, if the coupling
of dissolved molecules with the solvent is not considerable.

The effect of an external electric field is not restricted to producing polarization
of the molecules as given by the tensor of electric polarizability (af;); moreover, it
gives rise to ulterior non-linear electric deformation defined by deformation tensors
of higher orders (b, and (¢fp)- Such deformation may consist chiefly in a bending
of intramolecular bonds causing changes in the polarizability and in the permanent
moment of the molecule. The latter may undergo similar deformations in an external
magnetic field. Both the electric and magnetic deformations have been taken into
account in the present paper, as well as the intermolecular forces already mentioned.

The mathematical treatment of the theory of the effects of molecular. orientation
will be brought under two headings: in the first place, gases and highly diluted
solutions, in which molecular interaction may be neglected, are considered; in the
second — condensed systems, composed of mutually interacting molecules, as so-
lutions or pure liquids.
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3. Dielectric polarisation and dielectric saturation of a rarefied diamagnetic medium
in an electric and magnesic field

Accordingly, we shall first consider a system of N molecules, wherein the existence
of molecular forces of the mutual interaction of the molecules may be neglected. The
system is simultaneously subjected to an external electric field E and an external

magnetic field H making a given angle £.
The potentlal energy of a molecule of the system under consideration in the

fields F and H may be expressed by the formula

1 1
we FH) =— Y mwF—g Y afjuia P — g Yl fif P —
i iy

if

1 e 1 em 3
—% Z bifkai“j“kF3——2— Z bijk % B B F H? —

ijk ifk
1 e 1 p
— 5z Z cijk,o:,-oejackaczF’*——Z Z c;}fk;ociaz,-ﬁkﬂ,ﬁ’2 H? + ... 3.1)
ijkl ijkl

wherein y; denote the components of the permament moment of the molecule in the
system of reference x, y, z attached to the molecule (i =1, 2, 3), af; and af} —
the components of the tensors of electric and magnetic polarisability, respectively,
e Corp Oigk €l ims— the components of the tensors of electric and electro-
-magnetic deformation, and a;, f; — the cosines of the angles formed by the directions
of the axes x, ¥, z with those of the fields E and H; the indices take the values
ij, k1=1,2 3

The projection of the total electric moment of the molecule on the direction of
the field vector E is given by

e =_du(1,F,H)
E dF ~’

or, with regard to (3.1), by

m‘ = Z,uz“t +Zau“z%F+ 9 thjk“z“J“kF2+ 2 Zb”kaﬁjﬂkH2+

itk ijk
1 ee 3 em 2
+ 3- Cijkl o; O Ok 0 F + —2— Cijkl ®f ﬂk [31 FH + (32)
ikl ijkl
The statistical mean value of the moment m% of a gaseous medium is given in classical
E g g
statistical mechanics by the formula

u(f:F,‘H)
fm‘ dt

_ u(n, FH) 3.3)
fe kT dT

{m&>e,n
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wherein dt denotes the volume element in positional and orientational coordinate
space.

- Substitution of (3.1) and (3.2) in (3.3), expansion and integration vyield
(cf. Appendices I and II):

1 pi :
{mydpn =5 Z (afi + kT) F+
+ (O™ + OFm + AT 4 243™) FHE +
4 (@ie + 2@;& — @;‘ -+ Aie -+ 4[]’2‘) 3 + ... (34')

with

3cos20Q0—1

@’em =TT Z (3ajj aff — aj; aff),

3 cos?

@Im = W Z (3ad mipi —. i 5 )’

A" = =35 Z (B cos?2 Q2 —1) ¢ifts; + (2 — cos?2 Q) ¢y,

1

Am — 30 i Z [(3 cos? 2 — 1) u; b; ,u "4 (2 — cos® Q) u; bf,';'-j],
0'=1g5 kT Z (3ajjafi— afiafy),
7

ee 1 e 2
@2 = 45 k2 T2 E: (3a£jui Hi— (l;,"u]'),
i

1 2 2
B Te Ly il

i

@ee

g L Z (e -+ 2 )

1=30 4 Cii Cijij)s
ij

1 ee
A% = 557 3., wilbs + 285, (35)
ij .

£ denoting the angle between the vectors E and H.

We define the statistical mean value of the electric polarisability of the molecule
in the fields E and H as follows:

(e Yp,H = % {mEYE,H. | (3.6)
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In particular, the statistical mean value of the electric polarizability of the molecule,
in weak measuring fields and without biasing fields E and H, is

9 e
ety = (ﬁ <mE>E,H>g:g : (3.6a)

The molar constant of dielectric polarizability is, by definition,

pPM E%JENA D) (3.7)
with
R M
]\/A == NO 7

being Avogadro’s constant, Ny —- the number of molecules per unit volume of the
medium, M — its molecular weight, and d — the density of the medium.
With regard to definition (3.6a), eq. (3.4) yields

@ =3 ¥ 4+ 7)

1

whence, with regard to (3.7), the following expression is obtained for the molar
constant of dielectric polarizability:

pu_ by 1 ' (e LAY (3.8)
3 3 4 BT
i ,
The molar constant of dielectric saturation in an electric field is defined as follows:

=t y, (H2m0 — ey (3.9)

3 k2

The molar constant of dielectric saturation in a magnetic field is defined similarly:

m__ 4w LaDon — <o)
Sem == =5 Ny T (3.10)
These two definitions, together with eq. (3.4) and definition (3.6), yield
See =47 Ng (6F 2 0F — OF + AY +4 43), (3-11)
4 ‘em ‘em ‘em ‘em
Son= 5 Na (1" + OF" 4+ Af" +2 47", (3.12)

If variations arising from electrostriction or magnetostriction are not taken into
account, the electric permittivity in strong fields E and H is given by the general
formula

d .
(B, H) =1 +4a Ny 55 {me)nn (3.13)
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or, with regard to (3.6), by

oF
e(E,H)=1+4aN, (cx")E,Hﬁ. (3.13a)
In particular, with zero field strength, the permittivity is
&
- gg=1+4+4nN, <oc>( F) E=o0. (3.14)

Hence, we obtain the variation of the permittivity arising from the saturation effect
resulting from a strong electric field applied:

v OF df -1
2 —
M See F* 5% [1 (ag)m] . (31

On the other hand, 4 &, resulting from a strong magnetic field is

-1
Aepy=2e(0,H)—gy= 3 — SgﬂzaF[ (91) ] . (3.16)

Aesy =¢e(E,0) —gy=3 —

JE de

here, f denotes:

S () By e

It is worth noting that the experimental value of the variation of the permittivity
differs from A4 &, as.it represents a superposition of the latter value and of secondary
effects resulting from electrostriction and the electrocaloric effect; both these second-
ary effects are relatively small and have been calculated elsewhere (cf. Piekara, Chet-
kowski and Kielich (1957)). The same is true of the effect of the magnetic field on the
permittivity.

4. Refraction and birefringence in electric and magnetic fields in diamagnetic
non-condensed media

The componeﬁt of the total optical moment of the molecule in the direction of
the field of the light wave E°, if deformation in the fields E and H are taken into
account, is given by:

m%" Z%%V;Fo‘*‘sz;kV;V]“kFoF“l"
+%Z ]kl %Vjaka’Fon_i'— th),klyzyjﬂkﬁlFoH2+ (4"1)

wherein af; denote the components of the tensor of optical polarizability of the
molecule, b7, ¢f, and ¢/, — the components of the tensors of electrooptical
and magnetooptical deformation, p; — the cosines of the angles between the field
direction E° and the axes x, y, z
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The optical polarizability of the molecule in the fields B and H is defined as
follows:

am%o
o’ = 3T 4.2)
. The mean statistical value of «° is given by:
_u(z, F, H)
, x’e kT dtT
{a*PE,H= ' (4.3)

_ u(z, F, H)
fe kT dt

wherein u (7, F, H) is the potential energy of the molecule in the fields E and H,
as defined by (3. 1).
By (4.1), (4.2) and (3.1), eq. (4. 3) yields:

1 o ’om ‘om
{aDpnu = 3 Z ai; + (O + 41™) H? +

+(OF O + A L2 AT F #4)
with
om S C08% Q2 —1 o m o m
o7 =_——9—0—k’;——— Z Bajj aij — ai; ajj)
7

Af" = ?10— Z [(3 cos? Qp — 1) cffly; + (2 — cos? L) ],
7

10e 3 COSng—l o e o €
0" = —ET Z 3 ajy ai;;— ai; a57),
ij
P "3cos? Qg —1 0 0
0, = TR Z (3 afj i py — af 1),

ij

o 1 | oe . oe
Al = %— Z [3 cos? QE ——1) Cijij -+—’(2 — cos? .QE) C,',‘jj],
if

o 1 oe oe
AP = oy Z [3 cos? @ —1) p; b 4 (2 — cos? Q) s b1, (4:5)
if

Here, 2gdenotes the angle between the light wave vector E°and the vector E,and 2,—
that between the vectors E° and H. ,
The molar constant of refraction is defined by the relation

RM = %’_‘ Naao>, 4.6)
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here, {a°) is the stasistical mean optical polarizability of the molecule when the
fields E and H are absent {a°)g_, ; thus, by (4.4) we may write
H=0

4 1 ’
RM =L N, T Z g (4.62)

The molar Kerr constant is defined as follows:

dr . LalDE0— <& Dk,
KM = Ny I 73 L/E0 @.7)
and, similarly, the molar Cotton-Mouton constant:
dm o LafDo,a—<21 D01
on =20y o0 — , @8)

where af denotes the optical polarizability of the molecule for a light wave field
parallel to the vector E or H (when Q5 = 0, or 2,, = 0), and a’ — that for a vector
E? perpendicular to B or H (25 = 90° or Q4 = 90°.

With -(4.4) definitions (4.7) and (4.8) yield

KM =27 N, (0% 4+ 0% + A% + 24%), (4.9)
CM = 27 N, (O™ + A, (4.10)

wherg .

OF = o7 3, Bafal—aha),

iy
OF = o 3 ok
A7 =15 Z (301111 czi?‘i)’

A5 = g 3 Gur b — s B,

o — 45“};? Z (3afal— aa),
1]

1= 5 Z (?’Cu,u ¢i55)- _ (4.11)

On the other hand, the molar constants KM and CH calculated theoretically from
eqs. (4.9) and (4.10) should be computed on the basis of experimental results. For
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this purpose, the relations defining the usual Kerr constant K and the usual Cotton-
Mouton constant ( are employed:

ny| (E, 0) —ny (E, 0)

K:

n f
om0 H):nl ©H . (4.12)
The light refraction index is given by the fundamental relation
n?=1+44a Ny{a®)g, n z—};; . (4.13)

The Lorentz formula may be assumed to describe the local field within the light
wave:

2
=" 3+ 2 po (4.14)

which results in eq. (4.13) yvielding the generalized Lorentz-Lorenz formula:

n?—1 4=
m—z = —3—* NO (oc")E,H (4'15)

where
{a°dp, =% Z af 4 (01" 4+ A™) H2 +
(O + 05 LA 247 FE 4 . : (4.16)

the magnitudes in the brackets being given by (4.5).

The definitions- of the molar constants (4.7) and (4.8) and relations (4. 12) and
(4.15) yield the well-known relations

6n2 M [E\®
M e — ?
K K(n2+2>2d<)
6n2 M
M il 4.17
M= Crrpa (17

which enable us to compute KM and CM from experimental data.

5. The Kerr and Cotton-Mouton effects in a diamagnetic condensed medium

In a condensed medium, in addition to the potential engrgy of the N molecules
of the system in the field of external forces, the potential energy of molecular inte-
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raction, Uy, should be taken into account. Thus, the total potential energy of the
system of N molecules under consideration is equal to

U =Uf(r,F,H) + Uy (5.1)
where
N
Uz, F, H) = 2 u (v, F, H)® (5.1a)
g=1

is the potential énergy of the system of N molecules in the fields F and H,
and u(z, F, H)@ —that of the ¢-th molecule, defined by a formula analogous to (3.1):

u (‘E, F, H)(Q) Z i o (q) F— _;_ Z a’#! “(q) @ F2_.
— % 2 Q5 ﬂ(q) J(Q) H? 4 ) (5.2)

U, is the potential energy of mutual interaction of the N molecules of the system,
accounting for intermolecular forces of any kind, e.g. dipolar, inductive, van der
Waals forces, etc.

The optical rolarizability 4° of the system is equal to the sum of the optical.
polarizabilities of the molecules:

N
40 =3 @ (5.3)
g=1

where a °@ is the optical polarizability of the ¢-th molecule defined, accordig to
(4.1) and (4.2), as follows:

%@ — Z a‘.] ’}/‘(Q) ,y](q) + Z b”kyfq) y](q) @DF 4
1

ijk

+ % ; 7,1(41) y](q) a(q) agq) F? 4 Z Cz;, - 7/54) 7,]q) ﬁ@ lg(q) H? -+ . (5'4)
it

iskl
In classical statistical mechanics, the statistical mean value (5.3) for a condensed
medium is given by the following expression:

U(T:F H)+ Uy

fA e ®T dt
(A)5n= Ut F, )+ Uy (5.5)
B
with
N .
i = [] &, (5.59)
g=1

dr, = dv, dw, is the configurational element; dv,, the volume element of the g¢-th
molecule is given in the Cartesian coordinates x, y, z; dw, = sin 9, d¥, dy, dy,,
the orientational element given in the Eulerian angles 9, @, ».
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On expanding (5.5) in the field strengths E and H and on dropping all terms
~ containing odd powers of the direction cosines (in isotropic averaging these terms
vanish, cf. Appendix II), we have

(A S = Z < Z O (q)\{ _2'17]—“2[ o < ZN P ﬁ<r)\ +
T r=1
( akl\z o <r>\ H;:;I(\ Z i o a§’)>)]} n

Y N sl N N
a.-a y o
( a3 oA + 8 (S 0pa > ) +

g=1 g=1 r=1

ukl

N N
a 7,
( Cukl 7 Z N O @\ + u < 2 Z NONON N, >>

ukl g=1 r=1

N N
2b 1 T a; r) (s
uk,u <Z 2 yf")y,‘“’a(“’a( >\ ;;f}gl Z Z Z (q>y]<q>“< >“( )>) 4+
g=1 r=1 =1 r=1 s=1
(5.6)

(X;,i=1,2,3) being the system of reference at rest attached to the observer,
(X®, i = 1, 2, 3) — the molecular system attached to the p-th molecule and (X;?, @ =
=1, 2, 3) — that attached to the g-th molecule, we have the relation

3 .
a? = Z w,(-fq) “](p)’ (5.7)
j=1
where oc(") and a{ are the cosines of the angles between the direction of the field E
and the axes of the molecular systems attached to the p-th and g-th molecule respective-
ly, and w(”@ — the cosines of the angles between the axes of both molecular systems

(X(P) j— 1,2,3) and (X®@,i=1,2,3). Similar relations hold for the remaining
direction cosines.

Since the molecules are all of the same kind and in the same conditions, eq.
(5.6) may be rewritten (for the principal axes) in the form

(A = N{aDpn (5.8)
where .

* 1 o ’*om I*om
{a>p, = T:“{Z af + (O "+ A4 HE +

(O 4 07 + A7 42 A7) 2 A (5.9)
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with

N
rpe 3 cos? QH —1 o m / (rq)  (pa)
6, = TTRT Z i Gy \Zl Bwi” wjf 1)> ’

i q

Ai*am = 30 Z (3 cos? Qg — 1) 011,117 +2— cos® Qp) C:"i:';'j] ’

roe _ 3cos? Qg —1 w0 (00 >
O = HWT—Z @i 0 \Z BoiT o™ —1) 2,

rxp 3 cos? 02 ——1 ( ¢ (
O = o X <ZZ(3“’")‘°5") @if’)

1} qlr

A = 30 Z [(3 cos® g — 1) cffyj 4 (2 — cos® Q) ¢ij] » (5.10)

A5 = Sy D10 o0 0 s @ oot 23 ) <Z 3

Hence, as in §4, we calculate the molar Kerr and Cotton-Mouton constants for
condensed media:

K™ = 23 N, (01 + 67 + Af +247%),
C'M = 27 N 4 (7™ + 45m), (5.12)

9% _ IR IR TRN
01" = 5T kT 2 “““"\2 Boife;”—1 2,
0y = 45 szz agi f <2 Z (3w(Pq)wffr>_wfqr))>
g=1 r=
a7 =5 Z (3 ey — ciiii)s

*oe 0e (pg)
ap = IBET kT Z (3.“1 m — i bijj) <Z w;f? >

*am 0 m/ (pa) (P2 >
0" =15 kT Z % &g \Z Boi o —1) 2,

with

A =15 Z (B — ciig)- (5.12)
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For molecules possessing axial symmetry, expressions (5.11) and (5.12) take
“the form:

K™ = 27 N, (O Repy + OF Ry + A 249 Ry),
CM = 27 N, (0" Ry + AT, (5.13)

where the terms:

@ae 45 LT (033 &11) (aga—ail),

07 = 5 szz (a33— aly) u?,

oe 2
A7 = i [63333 + 5 Befizs + 261111)]

oe 2 O o€
47 = AT (b333 +2b113) &,

o0y = 45 T (a3s— ai) (a3s— at),

A" = 5 [Caa,as + 2ciT11 + (Bcizia— cit22) + 2 (Bclaas—citsa)), (5 14)
are accompanied by the following correlation factors:

N
Rp= (D] cos O
=1

N

Rem=1% <2 (3 cos® 6,y — 1),

g=1

—l
_2

N
Z—: (3 cos @, cos ©,, — cos 6,), (5.15)

ll Mz‘

0,, denoting the angle between the axes of symmetry of the p-th molecule and that
of the g¢-th.

Here, too, relations analogous to (4.17) are valid, namely:

6n2 M [E\®
K*M__K* M S
n?+42)2 d ( )
6n2 M
M __ (T T
M = C FErmid (5.16)

where K* and C* are the usual Kerr and Cotton-Mouton constants for condensed
media (e. g. for liquids).
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6. Dielectric polarization and dielectric saturation of condensed media .in the
electric and magnetic field

The component of the electric moment of the system of N molecules under
consideration in the direction of the vector E is the sum of the components of the

electric moments of the molecules:
N
== Z mio ; _ 6.1y
g=1

here, m&® denotes the component of the electric moment of the g-th molecule of the
system as defined by the formula similar to (3.2)

(
m&® — Z @ & Z a5o@a®F 1+ = Z b o oa? @ F2 4+
i

ijk
.__Z bw (q) Igj_q) 1324) H?
ik
1 @ @ @ 1
+2 Y dnala® o o4+ = Y el o P FOFE 4. (61a)
ikl ikl

In classical statistical mechanics the statistical mean value M% for a condensed

medium is given by
U F,H) + Uy

st [Mge ™ 7 de
{(Mg)gn = T . - (6-2)
fe— kT dr

Substituting herein the expressions (5.1) and (6.1), we obtain as in §5;
(MY = (4% + 6%) F 4 (B3 + O3 + Ajem 4 243) FH2 +
L (O] + 205 — @3 -+ Ay 4430 F3 + ... (6.3)
With

At — Z < Z “(q) (q)>

- e (T T

g=1 r=1

1 N
@*l‘em — Z a;j (LZ} (< “Eq) “](}1/ /3]?) ﬁ§f)> —
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*em 1 m Shak @ (;> 'O
O, WZMM% <<Z 2 Z“i %" Bk /31/ -

ijkl g=1 r=1 s=1

N

__<ZZ © 0N \/\Z 5§;>,3§">),

q=1r= §=

Alem — oy <Z 20 o B ﬁ@\

g ]kl

N N
*g 1 .
N TOWN L L O

k

S

N N N N
(IS )

N
Ao 1 e N 5@ 5@ p@ @

6 v ‘
ikl \q=1

1 N N

*, o)
A= g ) | mible <Z Y a@afaf oc(z’)>, (6-4)
ijkl g=1 r=1

Our aim, in analogy to §5, consists in calculating the above expressions
as functions of the angles subtended by the systems of reference attached to the
various molecules of the medium (whereas all the angles @ and § are related to the
vectors B and H). This aim has been achieved without introducing any assumptions



A Non-Linear Theory of the Electric Permittivity 227

whatsoever as to the nature of the intermolecular forces and without recourse to any
special model of molecular interaction; we have, however, assumed that the molecules
may be considered to possess rotational symmetry (an outline of the calculations is
to be found in Appendix III). Denoting by ©,,, the angle between the axes of sym-
metry of the m-th and n-th molecules, we have:

(Mgde, = N<medp (6.5)
where
e\ * Mz
{me)E,n = ae+mRP F+
+ (61" Roy + O5™ Ry + Af™ + 245" R,) FH? +
+ (OF Rom + 205 Rx — OF Rs + AT - 445 Rp) F3 + ... '(6.6)
with
‘em 3 201 e e m m
O = —=e—r (afe—ai) (afs—afl),
tem _ 3cos2Q—1 m
0" = =T (a33— af1) y?,

A" — [(1 + 2 cos? Q) (3338 + 2¢iT,11) +2 (3 cos? 2 — 1) (212 + 2¢i303) +
+ 2 (2 — cos2 Q) (cit.22 + 2¢11.33)]
A" = T [(1 4 2 cos? ©) 6% + 2 (3 cos? @ — 1) bfls +2 (2 — cos? Q) b3,

@ee

‘45kT(a33 af)?,

07 = 5 k“’TZ (a3s — aly) u?,

4

e 45 k3T3’

e 1 ee Ca £
¥ = gg (3ctsas + 12cf1ss -+ 8cfin),

47 = 30 kT (b33 -+ 2b113). 6.7

The correlation factors Rp, Rcyy and Ry are given by egs. (5.15), and

N
Rs (S\chs @pq/ \Z Zcos @,s/—-3<ZZZcos@Mcos@,,>)

r=1s= g=1r=1s
(6.8)



228 A.Piekara and S. Kielich

As was the case in § 3, we employ (6.6) to calculate the molar constant of polarization
of the condensed medium:

o A
PM_—_—;—TNA( . me), (6.9)

the molar constant of dielectric saturation in the electric field
S;M = 4w N4 (OF Repy +2 O Ry — OF R +AY¥ +4 4% Rp) (6.10)

and the molar constant of dielectric saturation in the magnetic field

* 4 em en em em
SiM ?"N,l (OF Roy + OF R + AT + 245" Ry). (6.11)
Similarly are obtained: the permittivity in a weak electric field
. ol oF
gg=144n N, (a + s 3kT Rp) (E)E=O 6.12)
the variation of the permittivity in a strong electric field
d ospy OF df -
Agsat i See F 9 1 — 6 | ., (6.13)
and the variation of the permittivity in a strong magnetic field
m o @ My, OF of -1
A Esar = 3 ﬂ— SemH aE [1 - (—9_6 e (6.].4)
where JF
f=4aN, (a +3kTa ) (ﬁ)&‘o ' (6.15)

7. The calculation of the correlation factors in some special cases

It was seen in § 5 and 6 that all five effects due to molecular orientation in con-
densed dielectrics are described by four correlation factors, which account for the
mutual interaction of the molecules, namely:

Rp = <q§1 cos Oy, D,
) N
Rem = 5 <; (3cos? @, — 1)> .
- N N
=3 <Z Z (3 cos Oy, cos B, — cos @;,,)> ,

al q=;\’r N N N
(5 <Zcos @pq> <Z Zcos @,S/ _ 3/2 Z cos @pg o8 @”>)
7.1

N

g=1 r=1 s= q=1 r=1s=1
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where
Un
[x(@) ¢ Fdx
Un ’
f e T dr
In order to calculate the set of correlation factors (7.1), it is necessary to make specific
assumptions concerning the form of the molecules and the nature of the forces with
which they interact. This complex problem is greatly facilitated if an adequate simpli-
fied model of the mutual interaction of the molecules of the system under consideration
is adopted. ' '
The most simple, trivial case is, of course, that of Uy = 0; then

X(0)) =

(7.2)

Rp=Rgy=Ry=Rg=1, (7.3)

and the formulas obtained in §5 and 6 become identical with those of §3 and 4 for
a non-condensed medium, as, for instance, a gas or dilute solution, if the coupling
with the solvent is to be neglected.

Another simple case is that of a system consisting of molecules interacting only
in pairs, each molecule interacting significantly with one nearest neighbour only. In
this case N = 2 and the set of correlation factors (7.1) takes the form

Rp=1+<{cos Oy,
Rem= 142 (o205 — -
cM = 9 cos?Oyy) — 3/
3 1
Rp=1 - 5 ({(3082 0> — 3~) + 2 {cos O3,

Rg=1-—3 (<c052 0> — %) + 4 +5 {cos O15>) {cos Oy, (7.4)

with

U
f cos"@ e *T dyy dr,
Us

fe— *T dr, dr,

{cos" @y, =

(7.5)

n being an integer. In the above formulas @, is the angle between the axes of symmetry
of the two molecules, and U, denotes the potential energy of their mutual interaction.

The exact expression giving the potential energy of mutual interaction of a pair
of molecules is of a rather intricate nature, and thus it is possible to compute the
magnitudes in (7.4) and (7.5) only approximately for small values of the energy of
pairwise interaction — an assumption considerably diminishing the range ~f appli-
cations.
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A model given formerly by one of us (A. Piekara 1937 a, 1938, 1939a, 1947,
1950, 1951) involving dipolar interaction of two neighboring molecules, is free of
this restriction. In this case the interaction energy is that of two dipoles:

2
Uy=Uy=— 'l—j? (3 cos 0, cos Oy — cos Oy) (7.6)

with ,

cos Oy, = cos O cos &, - sin @, sin O, cos ¢, (7.7)
6, and O, being the angles between the direction of the axis # joining the centers
of dipoles 1 and 2 and the axes of both dipoles respectively, ¢ being the azimuth.

When the dipoles tend to a parallel array one may put @; =0, 6, = @ (the
angle between two dipoles) and one obtains cos @, = cos @ and

Upy=—W cos O (7.8)

2
with W =2 ,u_3 . On the other hand, in the case of nearly anti-parallel coupling we
r

put ©; = 6, = 90°, ¢ = 180° — @ (180° — O being the angle between two dipoles)
and the interaction energy is given by the same expression (7.8) with a different value
of W and with cos @, = — cos ©.
For both cases we have

eos™ Op) = (£ 1)" L, (5), (7.9)

where

fcos"@eycosgsin@d@
Ly (y) = >—; (7.10)
feycosgsin('?d@

0

is a function previously calculated (viz. Piekara 1939a).
By (7.9), eqgs. (7.4) yield the following correlation factors for pairwise coupling:

Rp=1+1,

Rom=1+ (1_35), (7.11)

RK=1+(1—3§-)i2L,

Rs=1-—2 (1_35) +GL+4L.

In the above expressions, the upper signs refer to nearly parallel coupling, whereas
the lower ones correspond to the case of nearly anti-parallel coupling.
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8. The relationship between A e, and the Kerr and Cotton-Mouton constants

sat

The variation of the permittivity resulting from the effect of a magnetic field
and the usual Kerr constant, for a condensed medium, are given by the following
formulas:

m o @ ant gy OF df -
A Esqr — 3 M Sem H é)F [1 (96 s (8.].)
(02 £ 2)°
M
K* M K 6n? E B 8.2)

On omitting the deformational terms of higher order, the molar constants S;M and
K™M_ in the case of axial symmetric molecules, assume the form (viz. (6.11) and (5.13)):

. A
Sontl = 5 kTNA(3cos29_1) am(aeRCMJrkT RK) 8.3)
K*M — Nao0 (6 Rea + 25 R (8.4)
45kT 4 M T RT K

wherein 6™, 6° and ¢° denote the magnetic, electrical and optical anisotropies respectiv-
ely:

5" = afy— aft, O = afy— afy, O° = agy— aly. (8.5)
The above equations yield the relations

M _ 3cos2—1 om

= -~ K*M
i 3 K 5 (8.6)
and
*m 6n2 L, o
Asm, == (3 cos? Q — 1) m K F h(S) H2, (8.7)
‘with
wo=1— (%) | (&) 8.7
9=1'\e).-.| \F) 2E @7
and
dF
fle) =4a N, (a +3 T ) (5E)E=o 8.7b)

The magnetic anisotropy 6™ appearing in (8.7) may be determined from the Cotton-
Mouton constant, which, if the deformational term AJ™ is omitted, has the form

M
C 45 kT N.46°6m Reag. (8.8)
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For non-polar substances, it is more convenient to express the relationship (8.7)
by means of the Cotton- Mouton constant. From (8.3) with 4 = 0 and (8.8) we have
immediately

«sp__ 3ecos?Q—10¢
Sem = 3 C 8.9)
which, together with (8.1) and (4.17) yields
Aegi= (3cos2 Q — 1) ———— on’ ‘5 — W (e) H? (8.10)
sat ( 2+2)2
with
) af’ 17t oF
h'(g) = [1-— ( 24 )£=EGJ 3% (8.10a)
, [ 9F
f (8) = 417'CNOCL (6_7—];;)5=0' (810}))

In relationships (8.7) and (8.10) it is necessary to specialize the type of local
field acting on the molecule.
For the Lorentz field we have

e e 2
i = poi» afy = s, F= *T2E, ®.11)

where u,; and af; are the values of the components of the permanent moment and
electric polarizability of the isolated molecule, respectively.
For the Onsager field we have

Wi = S; Joi» Q5 = 8; Qgi, F = 283% E (8.12)
with
2e+1) (00 +2) and 1 — Uai
T 2ot 1) (foot2) —2 (e —1) (00— D) "L (aby + afs + abs)

(8.13)

In the case of isotropic molecules, the degree of anisotropy of the polarizability
of the molecule 4; = 1, resulting in

si=s = (8°°3+ 2) (;::_F;) . (8.13a)

Hence, for the Lorentz field we have % (¢) = 1, whereas for the Onsager field (on
neglecting anisotropy)

(2e + &00)?

PO = e e

(8.14)
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Thus, in the case of polar cubstances eq. (8.7) may be written for the Lorentz field
as follows:

6 n? x O™ 2
Aem=(3 cos2Q—1) e +2)2K E‘TH (8.15)

and, for the Onsager field:
6n2  (2¢e+ €e)?

A e = (3 cos? 2 —1) D EE T K" 50—112 (8.16)

In the case of non-polar substances, eq. (8.11) assumes the form

* 6n? € + 2
m_ 20 Ry
Aeg = (3 cos? 2—1) w +2)2( 3 ) c 6" "y 8.17)
for both types of local field.
The ratio of the electrical and optical anisotropies may be evaluated from the
relationship
o° e—1 '
6—” = ’—1/2“::1 . (8.].8)

The evaluation of A &™ for nitrobenzene in a field of H =40 kOe yields

sat

Aegm =6 x107°

sat

for the Lorentz field, and
Aem =4 x107°

sat
for the Onsager field. These values differ to some extent from those previously
given (51075 and 3 . 105 respectively, see Piekara and Kielich 1957) because
of -different experimental date used.

Appendix I
Expansion of the statistical mean value of an arbitrary function (/]

In classical statistical mechanics, the statistical mean value of an arbitrary function
@ describing the state of a system of molecules and not depending on their kinetic
energy is given by the following expression:
Up+ UN
o f Qe kT dr . 1
< >F = Up+ Un ’ ( . )
f e’ T kT dt

where Up denotes the potential energy of the system in the field of external forces F,
Uy — the energy of mutual interaction of the N molecules of the system, and
N

dr = [I dr;— the volume element of configurational space.
g=1
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.

Expanding the exponential functions in power ‘series, eq. (I.1) may be rewritten
in the form

(Y5 = "2 (1.2)
1\*1 "
Zo o k_T) n! <Ur
with
UNn
Xe #r dr
{XDpmp =<({X) = Bea— (L3)
N
fe T kT dt

From (1.2) we obtain, with the desired approximation
* 1
{DYr=<P) + (— k_T) (P Up> — <P KUr) +

+ ( ) [@ Uy — 24D Uy {Usy + <D 2<Urd* —KUR| +

1
21
( —1?) K@ UE> — 34D UEY (Up> + 3 (P Ur) 2 Uy — CUR) -

w|H

— LD (6 UpY* — 6 (Ugd (UEY + (U] + ... (1.4)

Appendix 11
Calculation of the geometrical mean values of the direction cosines

If the direction cosines are given in terms of the Eulerian angles 9, @, v, then
isotropically averaging we have:

e 1 3 1, for i =),

;X = —3— (S,'j, with 6“- = { 07 for i jJ; (H].)
1
%; 04y o Oy = = (84 0m + Oz 01+ Oy O 3 (IL2)

—— 1
o oc,- ﬁk ﬁ] == "?;*6 [2(2 —_— COS2 Q)é,'j 6};[ + (3 COS2 .Q — 1) ((S,'k 617 —I— (S,'] (Sjk)]; (11.3)

;:_—_ “i“jak:aiﬂjﬂk:"‘::o" (11.4)
Similarly, we have:

1 for m = 2n,

2n +1° (IL.5)
0, form=2n+1.

cos MY =
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Appendix 111

Calculation of the correlation factors in the functions O, (the angles between
the axes of the m-th and n-th molecules)

Making use of (6.4), we may write for axial symmetric molecules

1\]’

* 2a] +ae e e Y
A% =N [——113 L (asa—au) <COS2?9p —3/
*2— (4 e\
2] NkT \ cos & cosﬁq/,
(I e e )( m m) N
*em 33— d11) A3z — a1l 208 . 2. QMmN _
0,""=N oW <<Elpos &5 cos 194>
o

— {cos? 95> <i cos? 19,',">) ,
a=1
Oy" =N (a332—l;2a}12) w (<Z Z .cos? 9 cos 9, cos P > —
— {cos? 9> <Z Z cos 9, cos 0¢>)

g=1 r=

O1“=N (a332_k_;11) (/Z cos? 9 cos? 9 > — {cos? 95> <Z cos 19e>)

N

N
0% =N (ass —kza;z) w (<Z Z cos? 95 cos ¥ cos & > —

r=1

— {cos? ¥ > <§ zN: cos ¥ cos Iy )

G = k3 0 (3 /Z cos ¥ cos ﬁq\\ <Z Z cos 9 cos 19

’\) , (I11.1)

N N N
— <qz=1 ;1 ; cos ¥ cos ¥ cos ¥ cos ﬁs/

where 9 denotes the angle between the axis of symmetry of the p-th molecule and
the direction of the electric field E, and ¥y +— that formed with the direction of the
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magnetic field H; similarly we write 8¢, 97, etc. From the spherical triangle in Fig. 1
we have

cos 97 = cos ¥ cos 2 4 sin J; sin £ cos ¢, (111.2)

£ denoting the angle between the vector E and H. In order to calculate the isotropic
mean values of the magnitudes (IIL.1), it is necessary to obtain relations between the
cosine of @ (the position of the p-th molecule being fixed) and the field E, on the one
hand, and the cosines of the angles 9, 97 and ¢ between the g-th, r-th and s-th
molecules and the field E, on the other hand. From Fig. 2 we have the following

relations:

Y
s
7t x
Fig. 1 - Fig. 2
€ € 3 ] M
-~ cos 194 = C08 19P cos qu -+ sin 191, sin QM COS Py >
cos 92 = cos #;, cos @,, +sin I, sin @, cos ¢,
cos 9 = cos ¥ cos O, 4 sin Gy sin O, Cos Py (111.3)
and

cos @, = cos @, cos O, +sin O, sin 0,, cos ¢,

cos @,, = cos @, cos O, + sin O, sin O, cos @y,

cos @y = cos O, cos O, +sin O, sin 0,, cos Py. (111.4)

y (IL5) and (III. 2, 3,4), and on averaging, we have

cos 9 cos ¥ = = cos @y , cos? P = cos? Iy = 3

3

cos? 9, cos? ¥y = 1—15 (1 42 cos? By, ,
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1
cos? 95 cos 9 cos ¥, = 3 (cos Oy + 2 cos Oy, cos O,),

1
cos 9% cos ¥ cos Dy cos P = = (cos By €O O + cos Oy, cos Oys + cos By cos O,),

cos? 9 cos? Oy = _11§ [(3 cos? Q — 1) cos? @y, + (2 — cos? Q)],

(111.5)

cos? 9y cos U5 cos ¥ = —113 [(3cos? 2 — 1) cos Oy, cos Oy, + (2 — cos? Q) cos O]

Accordingly, the expressions (IIL.1) now take the form

'

S = N2 ai1 - ass
= >

e e m ”
om — N (a33 — a11) (a3s — a11) (3 cos? 2 — 1) Rear»

BET
o - NGB g 0 1R 1116
= N g Gt =D Re, (tiL0)
*ee 2 (a’;.'i i ail)2
O =N="sr femo
*ee 2 (ae33 - ail) ,UI2
O =N"gpr o

i
v =N s .

where the correlation factors Rp, Ry R and Rg are given by (5.15) and (6.8)

KPATKOE COJEPXKAHMUE

A. Mlexapa u C. Kenux. Heuneiinan meopus >4eKmpuuecKoti npoHUYaesocmu u ped-
pakyuu SUIACKMPUUECKUX KUOKOCMEll € IAEKMPUHECKUX U MAZHUMHLIX NOARX.

ABTropaMu gaercsa oOlas MOJIEKYJfAipHad Teopusa HEJIUHENHBIX MOJIEKYJIAPHO~
-~OPMEHTHPOBOYHBIX 9(P(EKTOB BRLI3LIBAEMBIX B ras’ax M AM3JNEKTPUICCKMUX KHUAKOCTAX
IIPUJIOXKEHMEM SJEKTPMYUYECKMX ¥ MATHUTHBLIX IION€i. BBIMMCIAIOTCA MOJAPHBIE I10-
CTOAHHBIE! JMINEKTPUYECKON MOAAPMIAIMI Py, Korroma—MyTona Cyy, Keppa Ky,

¥ KU3JIEKTPUYIECKO! HACBLILIEHHOCTH B 9JIEKTPUYECKOM Sjj M B MAarHMTHOM LOJE Sif AJs
razoB (§ 3 u 4) u muakocreit (§ 5 u 6). LA KuLKOCTEHM, MOJEKYJIbi KOTOPBIX 00aafaoT
8KCHAJBLHOM CHMMETDMel, aBTOPLIBBIYMCIMIy hakTopsr Koppensauuu Rp RoaRi, nRg
OTHOCAIIMECA K 9TMM KOHCTAHTAM M ONpeAelAIMUe B3aMMOIEHCTBME MOJEKYJ
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B XMUAROCTM. B BbIBOZe (hAaKTOPOB KOppeNAUMy He CAENaHO Kakux Obl To HM ObLIO
crienMaNbHBIX IIOJIOKEHMI OTHOCUTENBHO HPHPOALI CUJ AEMCTBYIOIIMX MEXKIYy MOoJe-
Kynamu. <DaKTOPbI KOPPEJIAMY BBIPAXKAIOTCA (OYHKLUMAMKU Yraa 6, MEXAYy OChIO
CUMMETPUM DP-TOM ¥ Q-TOM MOJIeKy . JIIa cyyas B3auMOKEACTBIA IPUBOAAILETO K 06pa-
30BAHMIO IIAp AMIIOJe IOJY4HarTcsa (POPMYJIbI JOKA3aHHbIe PAHbIIIe OJHIMM M3 aBTOPOB.
KOTOPbIMM YUMTBIBAETCH, MEXKAY NPOUMM, MHBEPCUA RMIJIEKTPUHECKO/ HACBILIEHHOCTH
(§ 7). HagoHel, NPUBOAUTCA COOTHOIICHME MEXRKAY W3MEHEHMEeM AMIJIEKTPUIECKOi! IIpo-
HUIIAEMOCTM B MATHMTHOM IToJie M rocrosuHoi Keppa mnm Korrona—MyToHa, 1 Kaerca

OLIEHKa IIOPAXKA BEJMYMHBI el
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