Vol. XVII (1958) ACTA PHYSICA POLONICA Fasc. 4

SEMI-MACROSCOPIC TREATMENT OF THE THEORY
OF NON-LINEAR PHENOMENA IN DIELECTRIC
LIQUIDS SUBMITTED TO STRONG ELECTRIC
AND MAGNETIC FIELDS

By S. KirLicH
Institute of Physics, Polish Academy of Sciences, Poznan
(Recetved September 15, 1957)

The present paper brings a consistent semi-macroscopic theory of the non-linear
effects of molecular orientation produced by strong electric or magnetic fields in condensed
media. The deviation from the quadratic effect of dielectric saturation in a strong electric
field has been calculated for polar liquids with molecules exhibiting isotropic polarizability
(§3). Furthermore, general expressions are derived describing the effect of a strong
electric or magnetic field on the index of refraction (§ 4) and on the dielectric permittivity
(§5), and yielding the constants of Kerr and Cotton-Mouton as well as the variation of
the dielectric permittivity in electric and magnetic fields. The molecular interpretation
of the resulis yields formulae derived by the molecular method (A. Piekara and S. Kielich),

1. Introduction

J. Herweg (1920}, applying the theory of Langevin and Debye (1905, 1912) was
the first to calculate successfully the effect of an electric field on the dielectric constant
of a dipolar gas. Subsequently, Van Vleck (1932) investigated the effect of electric
and magnetic fields on the dielectric constant of paramagnetic gases. A. Piekara
(1935 a, b; 1937 b, ¢), moreover, took into account the electric and magnetic defor-
mation of the molecule in considering the effect of electric and magnetic fields on the
dielectric constant of diamagnetic gases. Electric and magnetic deformation of the
molecule had beén considered by M. Born (1933) in his theory of electro-optical and
magneto-optical effects in polar gases. Recently the problem has been taken up by
A. D. Buckingham and J. A. Pople (1955, 1956).

In investigating the effect of molecular coupling on the dielectric constant and
on the optical refractive index in polar liquids two tendencies may be distinguished
as regards the method applied. The first was originated by R. H. Fowler (1935) and
P. Debye (1935) and developed in papers by H. Miiller (1936), A. Piekara (1937,
1939, 1950), H. Friedrich (1937) A. Peterlin and H. A. Stuart (1939), A. J. Anselm
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(1943) and J. Frenkel (1946), on the basis of a concrete microscopic molecular inter-
action model and the local field acting upon the molecules. Such a method has
recently undergone generalization to cover simultaneously polarization, dielectric
saturation in electric and magnetic fields, and the Kerr and Cotton-Mouton effects
in polar liquids (Piekara and Kielich, 1957, 1958).

The other tendency is derived from J. Kirkwood’s method (1939) and the much
more general method of H. Frohlich (1949), and is based essentially upon the macros-
copic model of a sphere (containing Ng mutually interacting molecules) immersed in
a definite continuous medium and subjected to the effect of an external electric
field. The method was subsequently applied and developed in papers by A. J. Anselm
(1944), F. Booth (1951), F. E. Harris and B. J. Alder (1953 a, b), A. D. Buckingham
and J. A. Pople (1955, 1956) and J. A. Schellman (1957). Both methods apply classical
statistical mechanics for computing the required mean values.

The present paper takes into account simultaneously the effect of electric and
magnetic, linear and non-linear deformation and of molecular coupling on the
dielectric constant and refractive index in polar liquids while basing on the latter
method. From results obtained in this way the author passes to relations obtained
according to the former method (Piekara and Kielich, 1957). As was the case in all
above-mentioned papers, the system under consideration is assumed to be in a state
in which quantum effects are of no importance, thus making the use of classical
statistical mechanics legitimate.

2. Fundamental relations

The dielectric permittivity ¢ of the (homogeneous and isotropic) medium, subjected

» to the effect of a strong electric field E and a magnetic field H forming a given angle
£ with the former, is calculated from the fundamental equation

_ 40 9Msypn _ 4n 9 (Ms- edan

te—l=5-—7F Vs ok ’

2.1
where Mg denotes the total electric moment of a macroscopic sphere S of volume Vg?
and e is the unit vector in the direction of the field E. The statistical mean value
M. e in classical statistical mechanics is given by the expression

3
(Ms- €5,y =T 57~ In Z (v, Bs, Hy), 2.2)
S
where
_ U (s, ES)HS)
Z(v,EBs,H)= [ ¥ ar, 2.3)

denotes the configurational partition function, & — the Boltzmann constant, T'— the
absolute temperature, Eg and Hg — the electric and magnetic fields in the presence
of the sphere S, respectively. U (v, Eg5, Hg) denotes the total potential energy of
the sphere S in the configuration v with fields Egand Hg and dr = dvdw is the con-
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figurational element fixing position (volume element dv = dx dy dz) and orientation
(orientation element dw = sin ¢ d& dp dy in Eulerian angles @, ¢, y). Assuming the
macroscopic sphere S contains Ng molecules, we have
Ns
dr = q]Zldvq dwy; dv, = dx dy,dz;; dw, = sind, dd, dg,dy,. (2.3a)
The effect of a strong homogeneous electric field E on the optical refractive
index n is calculated similarly:

=ﬂa<M§>E:@_a<M§'eo>E. (24)
Vs 9Ee Vs dFr ’ |

n2 —1

here, MY is the total optical moment of a macroscopic sphere S of volume Vg,
€° — the unit vector in the direction of the field E° of the light wave. The mean value
M. e° is obtained from the following relation:

<Mg' : ea>E = kT o In Z(T, Eg, ES)s (25)‘
dFs
and
U (s, ES, Eg)
Z(ES, E)= [ ar dr, (2.6)

where the guantities retain their previous meanings. Similar relations hold for the
. effect of a homogeneous magnetic field H on the refractive index n: in order to obtain
them it is only necessary to substitute the field H for E in eqs. (2.4) — (2.6).

3. On the dielectric constant of an isotropically polarizable dense medium in an

electric field E

To begin with, let us assume that the homogeneous electric field E acting on the
system under consideration produces isotropic polarization. This results in the total .
potential energy of the system in configuration v and in the presence of the field E
taking the form

Uz, Es) = U(T,O)——Ms'eEs———;—AsEg', 3.1
where U(v, 0) denotes the internal potential energy of ‘the system in the absence
of the external field E (if the sphere S contains N molecules, then U(z, 0) = Ung
is the potential energy resulting from interaction of the latter), 4¢ being the scalar
electric polarizability of the sphere S.

Substituting (3.1) in (2.3) we obtain

3
AsEs oo 1

Z(v, E)=Je ¥ Y — (f-;:) (Ms - e, (3:2)

n=0
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where

Uz, 0)

((Ms- ey = % f (Ms-e)re” #T dr, (3.3)

and

U(r, 0)
J=fe (3.4)

Relation (3.3) gives the mean statistical value of the n-th power of (M- €) when
the field E is absent, that is, when all orientations of Mg with respect to € are equally
probable; hence, on averaging and accounting for isotropic conditions, we may write

(Ms- ey = 71 M form =2n (35)

0 for m=2n +1

Hence, the configurational partition function (3.2) takes the form

Z(v, E A;kis 3 ES) (3.2a)
(. £s) = Z(Zn)'(Zn—l—l) M, '

and eq. (2.2) yields

1 Eg\™ 1t o cania
Z(2n+1)'<2n+3>< S) N
(Ms-edp= AsEs + ~ ~ . (3.6)

With (2.1) and (3.6) we may write the dielectric permittivity as the following general
formula:

1 E 2n+1

£s <M2n+2>
a9 i @n + 1)1 (20 +3) \kT

& — =V—S§E AsEs+

(37)

co

1 E 2n "
S o (B o

v @n +1)!

In the case of a weak electric field, eq. (3.7) yields the following formula for the
dielectric constant:

(3.8)

3k T_ ?E E=0

<M§>) (&Es)
Ve

e— 1= +— (As—f—
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With regard to (3.8), eq. (3.7) yields the following expression for the variation
of the dielectric constant determining the effect of dielectric saturation produced
within a polar dielectric by a strong DC electric field:

A& ——<5<MS>2—3<MS>
P 7N 30 k373
OB @MY My 19 M gy ) B, (9
with
-1
dte) = L3 [1 (2{) =s] ’ .
and o
9
ro= (4 ( ot <24ksz‘>) (?EE“S)E:(, : (3.9b)

here, &' denotes the dielectric constant of the substance in a strong electric field.
Assuming Frohlich’s model (1949) we have

4 QES
Vs (

3e
—E
2¢+ ¢
and eq. (3.8) yields Frohlich’s formula for the static dielectric constant for small
field strengths:

—ﬁ)éa—o = g0 — I} Bg =

47 3¢ »(MS>

£ b = VS 2 + €00 KT ° (.10)
and eq. (3.9) take the form
2 . N N 2\ g
A 8“" %4 3¢ 3e 3 <Ms> 5 <Ms> E2 +
2T 42 \2¢ + oo 303 T8
2 6y 4 2 2
4 (B ) OMs) —68KM) M3y +T0KM? [y | ] (3.11)
2¢ + £eo 1512 45 T'5

where &, is the high frequency dielectric constant of the medium.
We now proceed to the microscopic interpretation of the result obtained. Assum-
ing the sphere S to contain Ng molecules, we have

Ng Ng
Ag = 3 d@, Mg = >, m@, (3.12)
g=1 g=1
where a$’ denotes the electric polarizability of the g-th molecule within the sphere S,
and M is its electric moment. As all the molecules are of the same species and as
none of them (except for a small number on the surface of the sphere) is in any way
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distinguishable from the rest, we may, in determining the position of an arbitrary
molecule, write, by (3.12),

Ng Ns Ng
{Agy = Ngag; {M¥+?y = Ng u¥*2{ 3] cos O (Z} Z cos 0,)">, (3.13)
q=1 - r=1 s=1

here, ug is the value of the permanent electric moment of the molecule within the
sphere S, and @, is the angle between the electric moments of molecules p and gq.
Finally, by (3.13), we may write eqs. (3.7), (3.8) and (3.9) in the form:

d
e—1=dn ]; aE a-SES+
| U E Ns Ng
S =8
Z(2n+1)l(2n+3)( ) <ZCOS@M(Zizlcos@")
= (3.14)

Z (2n+1)' (”s Es) <(; ; cos @,,) > :

and
1= 4“ Ng IEs ’ 315
L= S+3kT DE ) gno’ (3.15)
*e € 10 E
Aeyt, = (A&ia)ga [RS —a (”ZTS) RY + ] , (3.16)
where
e‘ . | NS .
(A Coa)d = — 127w —— Vs 4§k3T3 d(e) E%, (3.17)
and '

Rp = \ Z cos @M>

Rs =1 s Zcos@,,q/\zzcos@,,>_

r=1 s=

—3 <Z Z Z cos Oy, cos@,,>]

¢=1 r=1 5=



Semi-Macroscopic Theory of Non-Linear Phenomena 245

R |LTOIETRES 1) EEOEG 1 e

t=1 u=1

Ng Ng Ng Ng

._63/2 cos@qu\ZZZZcos@,, cos@,, > +

r=1 5s=1¢t=1 y=

Ns
-9 /Z Z Z Z Z cos O, c0s O, cos @,u>] (3.18)

s=1 =1 y=1

The relation (3.17) determines the so-called quadratic dielectric saturation effect
in a polar substance. The second (and following) terms within the brackets in the
general formula (3.16) determine the departure from the quadratic dielectric satura-
tion effect as observed experimentally by Kautzsch (1929). The magnitudes Rp, R
and RY account for the interaction of the Ng molecules in the dielectric; we denote
them as correlation factors.

For Onsager’s (1936) model we obtain

_ feot+2\ 26 +1\ e +2| [2:41
s = 3 2e + oo Go3 fis = 3 26 + oo HFo >

_ 36 L (e te)? [ 3e \2 (3.19)
BT ma N T ea 1 (26+1)'

where &y, is the high-frequency dielectric constant of the substance, i. e.

6«,—}—2_ 3 Vs 0>

(3.20)

and @y and p, denote the electric polarizability and the permanent electric moment
of an isolated molecule. Now eqs. (3.15) — (3.17) take the form:

Nsg 3¢
£_£°°—4WV32£+800 (

€00 + 2
3 3kT

RP, (3.21)

and
*e . 10 3 2 2\? (u, E\?
Agsgr = (Aetar)ga [Rs—gg(zajgw) (6“; ) <’2’T) R§”+...], (3.22)

with
2 2 4 4
(Asiu)es = — 120 Vs 3¢ s o £2\' Mo’ g (393
Vg 262 + &2, 28+8°° 3 45 k3 T3

When the induced polarization is neglected, €0, being taken equal to 1, egs.
(3.21) and (3.22) reduce to

Ns 3e
Vs 26 +1 3kT

¢—1=4n * Re, (3.24)
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and
v 10 [ 3¢ \*(uo E\?
. Agsat = 3(A€sat)qd I:Rs_ag <§6+1> (W Ry +...1], (325)
where
ey Ns 3¢ 3¢ \? ot o .
(Aeim)ea = — 4 Vs 2e2+1 (28 +1) BB (3-26)

a formula first derived by Van Vleck (1937).

In the formulas derived previously, the correlation factors Rp, Rg, R given in
general terms by eq. (3.18) remain to be calculated in special cases:

(i) In extremely dilute systems we may assume zero interaction (U, = 0); then

Rp=Rg=RP =1 (3.27)

and egs. (3.15) — (3.25) hold for polar gases. In this case egs. (3.21) and (3.24) yield
the well-known Onsager formula (1936) for the static dielectric constant of a polar
substance.

(ii) Concentration is considerable, yet at a given moment the molecules interact
pairwise only, each molecule having no more than one neighbour in its nearest
vicinity. Thus, our system is a set of momentary pairs. In this case eqs. (3.18) assume
the form:

Rp=1 4 {cos Gy,),
Rg=1-—-3 ((cos2 0> — -é—) + (4 +5 {cos Oy,>) {cos Oy,>,
RY=1-9 ((cos2 0, — %) + 3 (4 +7 {cos Oy,)) {cos Op,> +

—{-i— (70 {cos @553 — 63 {cos Oy,> {cos? B,> + 9 {cos® By,>).  (3.28)

Thus, our problem reduces to that of computing integrals of the following type:

U,
f cos" @, e *T dr, d1,

{cos" Op,> = o , (3.29)

fe_ kT d7, dr,

where the interaction energy of a pair of molecules is of the form

2
U, = U(r) — % (3 cos @, cos By — cos Op) —

2
— “;rf" (3 cos? @, + 3 cos? O, + 2), (3.29a)
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and the cosine of the angle formed by the dipole axes of the two neighbouring mole-
cules is given by

cos By = cos & cos Oy + sin O sin O, cos (p, — ¢;), (3.29b)

0, and O, being the angles between the direction of the axis # joining the centers
of dipols 1 and 2 and the axes of both dipols, respectively, ¢ = @, — @, being the
azimuth. o

Because of the involved nature of U,, integrals (3.29) can be computed only
approximately (viz. F. E. Harris and B. J. Alder, 1953b, and also A. D. Buckingham
and J. A. Pople, 1955, 1956).

In computing (3.29) we apply A. Piekara’s method (1937, 1939, 1950) consisting
in the assumption of a specialized interaction model resulting in a simplification of
eqs. (3.29 a, b) and hence facilitating computation of (3.29). According to A. Piekara,
with regard to its chemical structure a molecule may form either a nearly parallel
or nearly antiparallel momentary pair with its next neighbour; thus, when the dipoles
tend towards a parallel array one may assume @, = 0, @, = @ (the angle between
two dipoles), which yields cos @5 = cos 6 and the dipole-dipole interaction energy is

Uy=Wy— Wecos @ (3.30)

2
with W =2 ’%— (the permanent dipole-induced dipole interaction is neglected).
r

On the other hand, in the case of nearly antiparallel coupling we put @, = @, = 90°,
@ = 180° — @ (180°— O being the angle between two dipoles) and the dipole-
-dipole interaction energy is given by the same expression (3.30) with a different
value of W and with cos 0, = — cos 6.

For both cases we have

Ceos™ Oy = (£ D" L, (3), (3.31)

where

Ea

f cos® 6 ey o @gipn @ dO
Ly (y) = : (3.32)
f eycos O gin @ JdO

0

L, (y) denote functions introduced by A. Piekara (1939b), which are expressed in terms
of the Langevin function L(y), with y = ;—? denoting the coupling energy of the

molecular dipoles in kT units. In general, integration of (3.32) yields

. - n! 1\ [e¥ + (D)1~
L, (y) = ’;) m (— 3/‘) l:—*e—;\:_;"--——:l (3.32a)
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whence
Ly=1, L = L(y) = cothy — % .
L 2 L
Ly=1—2=,L,=L—=[1—3—], " .
? vl Tt y( 3y)’ G
L= 1—4£ —{—% (1—35) 3o
y ¥ Y
By (3.31) and (3.32Db), eq. (3.28) may be rewritten as follows:
Rp=14+1L,

Rs=1—2 (1_3%) +GL+4L,

R§)=1—6(1—31§,‘) +3(7TL +4L 4+

il[35L3+9(7£——3)L+(3£—-—1):|. (3.33)
2 ¥ Y\ y

Thus, we have determined A. Piekara’s correlation factors (1937a, 1939b, 1950):
Rp is the factor corresponding to dielectric polarisation and Rg— that corresponding
to dielectric saturation. In the above expressions, the upper signs refer to nearly
parallel coupling, whereas the lower ones correspond to the case of nearly antiparallel
coupling. A. Piekara has shown that the correlation factors Rp and Rg account well
for experimental data: this is especially important in the case of the factor Rg, which
changes its sign when the interaction energy of a pair of almost antiparallel dipoles
assumes a critical value, thus accounting theoretically for the positive dielectric
saturation effect resulting from experiment.

4. On the refractive index of a dense medium subjected to deformation in an electric
or magnetic field

A material medium undergoing the effect of a light wave E° and that of a strong
electric field E forming the angle 2 with the vector E° is subjected to electro-optical
deformation (apart from mechanical deformations). The total potential energy of the
system in the state described above may be expressed (in tensor notation) as follows:

U (x, ES, Es) = Uz, 0) — ME,— Ql_' (S ESBS 4 A%, B, Ey) +
-% (B, ESESES + 3 BY, EgESE, + ...) +

— ;}; (CR ESELEVES +-6 Cotyg EgERE,E, + ... ) + ..., (4.1)
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where U(t, 0) denotes the internal potential energy of the system, M, — the electric
moment of the macroscopic sphere S, A2 and A2 — the respective electric and
optical polarizability tensors of the sphere S B, and C5.,, — the tensors of electro-
optical non-lineal deformation of the sphere S; the summation indices take the
values 1,2, 3. M,, A5, A%, By, and (7, are tensors symmetrical in all indices.

On substituting (4.1) in (2.6), expanding in powers of E% and Egand isotropically

averaging, we obtain

Z(z, E, ,)——J<l 3'kT[(Ae

(22 — 052 ) 8ue By -+ (3 €052 25 — 1) (Bos Brg + Bog Sus)] X (4 2)

MM

) E} + 45, E“] +

+5'kT

oe ] e oe Ao-;M M
X [Cl’ﬂ'e +k_T (A,,,A,,g +2Bcrv Mg + — < T )J ES +.. >

where

l1foro=rt
65t—{0 fOI‘ G#T _ (4!.3)

By (4.2), eqgs. (2.5) and (2.4) yield the general formula for the optical refractive
index of a dense medium:

4n IE} Ey /. 1 >
2__ . _
mel=g aEv{ <A°">(1 g et M Mo |

1

2 . 0
4Es <(2-—0032.QE) [C:;rt + 7 (2BZ,‘,,M AL A% %ﬂ—{f"ﬁi)] n

+ 3T

+ (B oos? 2z —1) [sz +kT (2B:;L,M + Al a2, 4 2o M)]> o }
' (4.4)

Similarly, a formula accounting for the effect of a magnetic field on the refractive
index may be obtained; in particular, for .a diamagnetic dense medium we have:

% 1 aEs
m—l=g an{ 4 °>( 3'kT<A )
+ A (o gy (cz:,",,, +A°“A") +
+(3cos2 2y — 1) ( c:’,':,,’+‘4‘"A°’)> +.. } : (4.5)

where A™ is the diamagnetic polarizability tensor of a diamagnetic sphere S,

and CJ7,, is that of the magneto-optical non-lineal deformation of the latter;
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2y denotes the angle formed by the light wave vector E° and the magnetic field
vector H. The tensor €27, will be symmetrical in the separate pairs of indices
g, T and v, 0.

With the sphere S containing Ng molecules of the same species, we may write
Ng
[¢ —
Z :“q) Aaz - Z a’quz?’

Ng
Bazv = 21 bgq‘l?v’ a‘n@ Z L<(7qr)vg (4"6)
g=

here, u@, a@, b2, and cf,",)m are the respective tensors referring to the g-th molecule
within the macroscopic sphere S.

Let us attach a molecular coordinate system (X;, i = 1, 2, 3) to each molecule
within the sphere S, and let us transform the tensor components (4. 6) from the external
(X,, 6 =1,2,3) to the molecular system according to the transformation formula

Tprre = Z Wy B Wy Oy Tukl, 4.7)
ijkl
with the assumption that the systems (X,) and (X)) are rectangular, w,, .,
representing the cosines of the angles formed by the axes X, and X. By (4.6) and
(4.7) and proceeding as in the case of eq. (3.13), we may rewrite (4.4) and (4.5) as
follows (assuming the axes of the molecular system attached to the molecule coincide
with the principle axes of the latter):

n2—1 . 4 Ng|1 2 oe 21),_,,/.17 (pq)\
n2+2_"3”17§{§z “+3OZ[(3COS QE“D(C"” + < A

2a,, a‘]] e (pg) (p@) 2“1:/‘1 e (pg) (pr) @\
3ET \Z B olf?—1) > + 555 Z Z(g —ei) )|+

+ (2 — c0s? Q) (c:';,+ bisty Z ,’f“)>)] Es+} 4.8)

and

n2~—1_47z NS 1 0 1 .2 om
2 3 75{—3' 2 it e Z [(2”0Ob r) i

1

+ (BeostQy— 1) (czi”fj+2§‘}£i’ { Z(fsw“’%ff“’ 1>>] H§+} (4.9)

where a)g-’q) is the cosine of the angle formed by axes X (of the system attached to
the p-th molecule) and axes X}“) (of that attached to the g¢-th molecule).
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On effecting the transition from (4.4) and (4.5) to (4.8) and (4.9) we had assumed
a Lorentz field as appropriate for the light wave EQ within the sphere S, i e.

212
s =" : B
The Kerr constant is defined as
P T N (o L e S e AN
K= n E2 6n? nf +2  n} +2/ E¥’ (4-10)

where ny and n, are the optical refractive indices for a light wave field E° parallel
and perpendicular to the electric vector E.

From (4.8) and (4.10) we obtain the following expression for the Kerr constant
of a dense medium:

x_ T NS n? + 2 2 ES 2 oe oe
K* = A (**g;‘) N Z 3¢ijij— Cigjj +
i

2 ) oe o0e 17
:u (3[)]” bw) /Z wEPQ)\ 4 i Gy a; a]/ /2 (Sw(PQ)wi(I;Q )> +

lel;]z /Z Z (3w(pq) (pr) (qr))\] (4.11)

g=1 r=

Analogously to the Kerr constant, we shall define a Cotton-Mouton constant by

o m—ny 1 1 (n24+2)2 [ af—1 nfj —1 1
o n H2 —  6n? n 2 n} +2

and eq. (4.9) yields the Cotton-Mouton constant of a dense medium:

. @ Ns{n?42\*[Hg\? < om om
C=m e\ ) \7) X Bt
1] :

a’/l;” <Z BwfPuPd 1)>) . (4.12)

Neglecting deformation terms, we obtain from (4.11) and (4.12) the following relations
holding for molecules presenting axial symmetry:

n +2 oe oe
K* = 3m VS ( 3n ) ( )(O RCM+@ RK)

and

2\ (Hg\® ..
¢ =3apS ( 3?5 ) (H£> 0 Rer» (4.13)
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where
@oe___ 2 (e e)(a aa).@oe_v 2 (o 0)2
1 = —45 kT agz—an) (az—ai) 5 Yz = 4——5k2T2 a33 anj)us.

om 2 m m o o
67" = BT (a3 — aly) (ass — a11), 4.14)

and the correlation factors:

Ng
1
Row = 5 <Z (3 cos? Oy, _1)>
g=1
1 Ns Ng N
Ry = 5 <Zl Zl (3 cos By, cos By, — cos @q,)// (4.15)
g=1 r=

with @,, representing the angle formed by the axis of symmetry of molecule p and
that of molecule q.
On assuming A. Piekara’s model discussed in §3, eqgs. (4.15) yield

RCM=1—{——;— ((cos2@12>——~—£1{) =14 (1—3—5—),

Ry =1 —I—% ((cos2 01> ——3}—) +2{cos Oy =1+ (1 — 3%) +2L (4.16)

which are A. Piekara’s (1939, 1950) correlation factors appearing in the Kerr and
Cotton-Mouton effect theory.

5. On the dielectric constant of a diamagnetic dense medium deformable in electric
_and magnetic fields

The total potential energy of a system subject to the effect of a strong electric E
and magnetic field H forming the angle £ is (apart from mechanical deformations):

Ule, Es, Hs) = U (5, 0) — My Eo— 3, (A% By B -+ A% Hy H) —
— % (BewEsE. E, + 3B E; H. H, +...) — 6.1)

1
— 7 (e B v By By 4 6CT00 Eo B Hy Hy ) + oo

where U (z, 0) represents the internal potential energy of the system, M, — the electric
moment of the macroscopic sphere S, 4%, and A7, — the tensors of the electric and

diamagnetic polarizability of the macroscopic sphere S respectively, Bg,, Cope—
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the electric non linear deformation tensors of the macroscopic sphere S and, finally,

Bg.,and (37— the electro-magnetic non linear deformation tensor. M, A%, A™, B,
and CZ,, are tensors symmetrical in all indices, B, is symmetrical in 7 and »,
whilst C77,, is symmetrical in the separate pairs ¢, 7 and 9, o. As above, (5.1)
and (2.3) yield
260, s, B = 1 1 1 [(A: + M) B A3 ]+
e 3' kT ¥ ET

1 e 1 e e e
+ m (601 6:1@ + 6¢7v 61@ + 60@ 617) [C;rm + H’ (3Aar Avo + 4’Ma B:ve) "l"

M, M, e M, M
+ szz (6Av0 + a)] Es + 51 k‘T [2 (2 —_— COSZ.Q) 5“6"2 +

v € 1 m
+ (3082 2 — 1) (84 b2 + 0 0s)] X [Ca’:‘,,q + 57 (ar A -+ 2M, Br) +
M, M, A",
+ -WZQ] FRHE & > . (5.2)

By (5.2), egs. (2.1) and (2.2) yield the dielectric permittivity of a dense medium in ge-
neral form:

4w 9Es |1 /
e—1= 73”@{3\ ar +-

1 Mo Mo (1 1 /A ' H: 43 (Ae

) ) +
kT 3va\
4E:

+ ? \szrr +2 wt + [4-‘Me (B:en ‘|" 2Bwr) + 3 (AnaA:1 + 2A Azr)] —I—

3

T (2A§6M M, +4A4;, M, M, + — MMMM)> +

+

M8 oot [c:::,,, 2 M B 4 (A; 4 MM )] +

+(3cos2~0-—1)[c;':',,,,+—kz7 a,+A°m’( MM)]>+ } 5.3)

Neglecting the deformation terms with polar molecules presenting axial symmetry
(5.3) yields

3cos22—1

£—1=4 NSaES[ 5

Vs 9k (05" Rey + 05" Re) Hs +

us
+ o 3T Rp+

+ (07 Reu + 207 Rk — 6% Rs) Eg] ; (5.4)
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where
@em (ae _ae ) ( m am)_ @em _ 2 ( m m) 2
45 kT 33— an) (ags— an); 02" = zeomm 08— a1 fs»
2 4
OF = oy (s — i) OF = s (o — ) 435 6F = gl (640

1 . Lo
and a, = — (2 af; + afs) represents the mean electric polarizability of a molecule

within the sphere S, the correlation factors Rgy and Ry being given by (4.15) and
Rp and Rg by (3.18).
For the variation of the dielectric constant in a strong electric field, eq. (5.4)

yields
Aggs, = 12n (@ Ry -+ 20% Rx — OF Rs) d(e) E3., (5.5)

where d(¢) is defined by eq. (3.9a).
Similarly, for the variation of the dlelectnc constant in a strong magnetic field, eq.

(5.4) yields:
Aet = 2n # (3 cost 2 — 1) (07" Rom + 05" R) d(e) Hs . (5.6)
S

The microscopic method yields identical results for the correlation factors Rp,
Reaps Rg and Rg (A. Piekara and S. Kielich, 1957, 1958).

The author wishes to express his most sincere gratitude to Professor A. Piekara,
Head of the Laboratory of Dielectrics of the Institute of Physics of the Polish Academy
of Sciences in Poznai, for suggesting the present subject and for his valuable advice.

KPATKOE COIEPXKAHUE

C. Kennx. Cenumarpockonosoe npedcmasaeHue meopuy HemHeiusx A8aeHUtl 8 OUIAEKMPU-
YeCKUX MCUOKOCMAX N00BEPIHYMbIX CUALHBIM IAEKMPUUECKUM Y MAZHUMHBLM NOAAM.

ABTOpPOM ITOCTPOEHA 00IasA HOJy-MakKpOCKONM4IecKada Teopnud HeJMHeHbIX 9 der-
TOB MOJIEKYJISIDHOJI OPMEHTALVM, BbI3hIBAEMEBIX B FKMIKOCTAX CUIBHBIMI 9JIeKTpUIe-
CKUMM M MATHMUTHBIMM HOJAMM. ABTODP [a€T BbIUMCIEHMEe OTKJIOHEHMA OT KBajgpaTu-
yeckoro shexTa AUIIEKTPUYECKOTO HACBILIEHMA B CHMJIBHOM 9JIEKTPUIECKOM none
JJIA TOJIAPHBIX XKMUAKOCTEN € M3OTPOMHO IIOAAPU3YEMBIMM MOJIEKYJIaMy (§ 3). 3arem
ZlaeTcs BBIBOZ OOIIMX BLIPAXKEHNIA OIPENeNAINMX BIMAHME CUILHBIX IJEKTPUHC-
CKMX M MATHMTHBIX TIOJIell HAa IoKa3aTejb mpejoMieHns (§ 4) M AMIIEKTPUIECKYIO
TIpoHMI@eMocTs (§ 5); OCHOBBLIBAACH HA STUX BbIPAKEHMAX, ABTOP BBIYHMCIACT II0-
crosuuple Keppa u KorroHa—MyTOHa, a TaKxke U3MEHEH!e MUSJIEKTPUYECKOJi ITPOHN-
LAeMOCTH B 9JIEKTPHHECKOM M MarHMTHOM mojie. MoJieKynApHaA MHTEepHperanus 3TUX
pPe3yIbTATOB MPUBOAMUT K (POPMYyJiaM ITOJYHEHHBIM PAaHbIIe MOJEKYJIAPHBIM METOAOM
(cMm. A. Tlegapa un C. Kenux).
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